期刊文献+

Eocene magmatism(Maden Complex) in the Southeast Anatolian Orogenic Belt: Magma genesis and tectonic implications 被引量:1

Eocene magmatism(Maden Complex) in the Southeast Anatolian Orogenic Belt: Magma genesis and tectonic implications
在线阅读 下载PDF
导出
摘要 The origin and geodynamic setting of the Maden Complex, which is situated in the Bitlis-Zagros Suture Zone in the Southeast Anatolian Orogenic Belt, is still controversial due to lack of systematic geological and geochemical data. Here we present new whole rock major-trace-rare earth element and Sre Nd isotope data from the Middle Eocene volcanic rocks exposed in Maden Complex and discuss their origin in the light of new and old data. The volcanic lithologies are represented mainly by basalt and andesite, and minor dacite that vary from low-K tholeiitic, calc-alkaline, high-K calc-alkaline, and shoshonitic in composition. They exhibit enrichments in large ion lithophile and light rare earth elements, with depletions in high field strength elements. Basaltic rocks have uniform Sr and Nd isotope ratios with high εNd(t) values varying from t5.5 to t6.7, in contrast to, andesitic rocks are characterized by low εNd(t) values ranging from à1.6 to à10. These geochemical and isotopic characteristics indicate that two end-members, a subduction-related mantle source and a continental crust, were involved in the magma genesis. Considering all geological and geochemical data, we suggest that the Eocene Maden magmatism occurred as a post-collisional product by asthenospheric upwelling owing to convective removal of the lithosphere during an extensional collapse of the Southeast Anatolian ranges. The origin and geodynamic setting of the Maden Complex, which is situated in the Bitlis-Zagros Suture Zone in the Southeast Anatolian Orogenic Belt, is still controversial due to lack of systematic geological and geochemical data. Here we present new whole rock major-trace-rare earth element and Sre Nd isotope data from the Middle Eocene volcanic rocks exposed in Maden Complex and discuss their origin in the light of new and old data. The volcanic lithologies are represented mainly by basalt and andesite, and minor dacite that vary from low-K tholeiitic, calc-alkaline, high-K calc-alkaline, and shoshonitic in composition. They exhibit enrichments in large ion lithophile and light rare earth elements, with depletions in high field strength elements. Basaltic rocks have uniform Sr and Nd isotope ratios with high ε_(Nd)(t) values varying from +5.5 to +6.7, in contrast to, andesitic rocks are characterized by low ε_(Nd)(t) values ranging from -1.6 to -10. These geochemical and isotopic characteristics indicate that two end-members, a subduction-related mantle source and a continental crust, were involved in the magma genesis. Considering all geological and geochemical data, we suggest that the Eocene Maden magmatism occurred as a post-collisional product by asthenospheric upwelling owing to convective removal of the lithosphere during an extensional collapse of the Southeast Anatolian ranges.
出处 《Geoscience Frontiers》 SCIE CAS CSCD 2018年第6期1829-1847,共19页 地学前缘(英文版)
基金 supported by a Scientific Research Project from Firat University(Project No:MF 1402) TüBI_TAK 2214-A(Scientific and Technical Research Council of Turkey International Research Fellowship Programme)
关键词 Maden COMPLEX EOCENE MAGMATISM SOUTHEAST Turkey Asthenospheric UPWELLING Maden Complex Eocene magmatism Southeast Turkey Asthenospheric upwelling
  • 相关文献

参考文献1

二级参考文献1

共引文献3

同被引文献5

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部