期刊文献+

基于布谷鸟搜索和深度信念网络的肺部肿瘤图像识别算法 被引量:7

Lung tumor image recognition algorithm based on cuckoo search and deep belief network
在线阅读 下载PDF
导出
摘要 针对深度信念网络(DBN)权值随机初始化易使网络陷入局部最优的问题,在传统DBN模型中引入布谷鸟搜索(CS)算法,提出一种基于CS-DBN的肺部肿瘤图像识别算法。首先,利用CS的全局寻优能力对DBN的初始权值进行优化,并在此基础上进行DBN的逐层预训练;然后,利用反向传播(BP)算法对整个网络进行微调,从而使网络权值达到最优;最后,将CS-DBN应用于肺部肿瘤图像的识别,实验从受限玻尔兹曼机(RBM)训练次数、训练批次大小、DBN隐层层数和隐层节点数四个角度将CS-DBN与传统DBN进行比较,以验证该算法的可行性和有效性。实验结果表明,CS-DBN的识别精度明显高于传统DBN,在不同RBM训练次数、训练批次大小、DBN隐层层数和隐层节点数条件下,CS-DBN较传统DBN识别率提高百分点的范围分别是1.13~4.33、2.00~3.34、1.07~3.34和1.40~3.34。CS-DBN能够在一定程度上提高肺部肿瘤的识别精度,从而提高肺部肿瘤计算机辅助诊断性能。 Due to random initialization of the weights,Deep Belief Network(DBN)easily falls into a local optimum,the Cuckoo Search(CS)algorithm was introduced into the traditional DBN model and a lung cancer image recognition algorithm based on CS-DBN was proposed.Firstly,the global optimization ability of CS was used to optimize initial weights of DBN,and on this basis,the layer-by-layer pre-training of DBN was performed.Secondly,the whole network was fine-tuned by using Back Propagation(BP)algorithm,so that the network weights were optimized.Finally,the CS-DBN was applied to the identification of lung tumor images,and CS-DBN was compared with traditional DBN from the four perspectives of Restricted Boltzmann Machine(RBM)training times,training batch sizes,DBN hidden layers numbers,and hidden layer nodes to verify the feasibility and effectiveness of the algorithm.The experimental results show that the recognition accuracy of CS-DBN is obviously higher than that of traditional DBN.Under the conditions of different RBM training times,training batch sizes,DBN hidden layer numbers,and hidden layer nodes,the increase range of CS-DBN identification accuracy over traditional DBN are 1.13 to 4.33,2 to 3.34,1.07 to 3.34 and 1.4 to 3.34 percentage points respectively.CS-DBN can improve the accuracy of lung tumor recognition to a certain extent,thereby improving the performance of computer-aided diagnosis of lung tumors.
作者 杨健 周涛 郭丽芳 张飞飞 梁蒙蒙 YANG Jian;ZHOU Tao;GUO Lifang;ZHANG Feifei;LIANG Mengmeng(Public Administration Research Center,Ningxia Medical University,Yinchuan Ningxia 750000,China;College of Science,Ningxia Medical University,Yinchuan Ningxia 750000,China)
出处 《计算机应用》 CSCD 北大核心 2018年第11期3225-3230,共6页 journal of Computer Applications
基金 国家自然科学基金资助项目(61561040)~~
关键词 布谷鸟搜索算法 深度信念网络 受限玻尔兹曼机 肺部肿瘤 图像识别 Cuckoo Search(CS)algorithm Deep Belief Network(DBN) Restricted Boltzmann Machine(RBM) lung tumor image recognition
  • 相关文献

参考文献8

二级参考文献108

  • 1罗清,张国华.数字化双能量减影技术在胸部肺结节及结节内钙化诊断中的应用价值[J].实用放射学杂志,2006,22(1):30-32. 被引量:20
  • 2熊伟丽,徐保国.基于PSO的SVR参数优化选择方法研究[J].系统仿真学报,2006,18(9):2442-2445. 被引量:66
  • 3VEDAM H, VENKATASUBRAMANIAN V. PCA-SDG based process monitoring and fault diagnosis[ J]. Control Engineering Practice, 1999, 7 (7) :903-917.
  • 4GHATE V N, DUDUL S V. Optimal MLP neural network classifier for fault detection of three phase in- duction motor[ J]. Expert Systems with Application, 2010, 37(4) : 3468-3481.
  • 5SALAMA M A, HASSANIEN A E, FAHMY A A. Deep belief network for clustering and classification of a contin- uous data [ J 1. IEEE International Symposium on Signal Processing and Information Technology, 2010:473- 477.
  • 6HINTON G E. A practical guide to training restricted boh-zmann machines [ R]. Report of Momentum, 2010, 9 (1):1-20.
  • 7KENNEDY J, EBERHARTR. Particle swarm optimiza- tion[ C ]. Proceedings of IEEE International Conference on Neural Networks. 1995 : 129-132.
  • 8TIELEMAN T, HINTON G. Using fast weights to im- prove persistent contrastive divergence[ C]. International Conference on Machine Learning, 2009 : 1003-1040.
  • 9HINTON G E, OSINDERO S. A fast learning algorithm for deep belief nets[ J]. Neural Computation, 2006,18 : 1528-1554.
  • 10DOWNS J J, VOGEL E F. A plant-wide industrial process control problem [ J ]. Computers and Chemical Engineering, 1993,17 (3) :245-255.

共引文献126

同被引文献57

引证文献7

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部