期刊文献+

基于多重卷积神经网络跨数据集图像分类 被引量:5

Cross-dataset image classification based on multi-hconvolutional neural network
在线阅读 下载PDF
导出
摘要 为解决不同数据集共同类图像特征学习能力弱的问题,采用深度学习算法模型,提出一种基于多重卷积神经网络的跨数据集图像分类方法。以中值滤波预处理后的图像作为网络输入,在两个池化层之间采用两组连续卷积层,卷积特征提取和池化后,采用L2范数正则化的Softmax损失函数作为模型分类器,完成多重卷积神经网络分类的训练和测试。实验结果表明,相比于传统JDA方法、TCA方法和KPCA方法,该方法在经典数据集Caltech256、Amazon、Webcam和Dslr上具有更好的特征提取能力和更高的平均准确率。 To solve the problem of weak learning ability of common data in different datasets,a method of image classification based on multi-hconvolutional neural networks was proposed.The image was pre-processed with median filter as the network input.Two sets of continuous convolution layers were used between the two pool layers.After the convolution feature was extracted and pooled,the normalized Softmax loss function of L2 norm was used as a model classifier to complete the training and testing of multi-hconvolutional neural network classification.Experimental results show that compared with the traditional JDA method,TCA method and KPCA method,the proposed method has better feature extraction ability and higher average accuracy rate on classical datasets Caltech256,Amazon,Webcam and Dslr.
作者 刘鑫童 刘立波 张鹏 LIU Xin-tong;LIU Li-bo;ZHANG Peng(School of Information Engineering,Ningxia University,Yinchuan 750021,China)
出处 《计算机工程与设计》 北大核心 2018年第11期3549-3554,共6页 Computer Engineering and Design
基金 宁夏自然科学基金项目(NZ17010) 国家自然科学基金项目(61751215 61363054) 西部一流大学科研创新基金项目(ZKZD2017005)
关键词 跨数据集分类 卷积神经网络 多重卷积 特征学习 L2正则化 cross-dataset classification convolution neural network multi-convolutional feature learning L2 regularization
  • 相关文献

参考文献5

二级参考文献64

  • 1付韬,马春光,李迎涛,刘东亮.基于开放平台的OAuth认证授权技术研究[J].保密科学技术,2012,0(9):58-62. 被引量:3
  • 2Kamishima T, Hamasaki M, Akaho S. TrBagg: A simple transfer learning method and its application to persona|ization in collaborative tagging [R]. USA: IEEE International Confe- rence on Data Mining, 2009: 219-228.
  • 3Scheirer W J, Rocha A R, Sapkota A, et al. Toward Open Set Recognition [ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013,35 ( 7 ) : 1757- 1772.
  • 4Pan S J,Yang Qiang. A Survey on Transfer Learning [ J ]. IEEE Transactions on Knowledge and Data Engineering, 2010,22(10) :1345-1359.
  • 5Long Mingsheng,Wang Jianmin, Ding Guiguang, et al. Transfer Feature Learning with Joint Distribution Adaptation[C]//Proceedings of International Conference on Computer Vision. Washington D. C. ,USA: IEEE Press, 2013:2200-2207.
  • 6Gretton A,Borgwardt K M, Rasch M J, et al. A Kernel Method for the Two-Sample-Problem [ C ]//Proceedings of Advances in Neural Information Processing Systems. Washington D. C. , USA : IEEE Press, 2006 : 513 -520.
  • 7Pan S J,Tsang I W, Kwok J T, et al. Domain Adaptation via Transfer Component Analysis [ J ]. IEEE Transactions on Neural Networks ,2011,22 ( 2 ) : 199-210.
  • 8Long Mingsheng,Ding Guiguang, Wang Jianmin, et al. Transfer Sparse Coding for Robust Image Representa- tion [ C ]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA :IEEE Press ,2013:407-414.
  • 9Long Mingsheng, Wang Jianmin, Sun Jiaguang, et al. Domain Invariant Transfer Kernel Learning [ J ]. IEEE Transactions on Knowledge and Data Engineering,2014, 27(6) :1519-1532.
  • 10Shwartz S S, Tewari A. Stochastic Methods for L1- regularized Loss Minimization[ C ]//Proceedings of Inter- national Conference on Machine Learning. New York, USA: ACM Press ,2009 : 117-936.

共引文献21

同被引文献41

引证文献5

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部