期刊文献+

深度学习优化算法研究 被引量:42

Research on Optimization Algorithm of Deep Learning
在线阅读 下载PDF
导出
摘要 深度学习是机器学习领域热门的研究方向,深度学习中的训练和优化算法也受到了较高的关注和研究,已成为人工智能发展的重要推动力。基于卷积神经网络的基本结构,介绍了网络训练中激活函数和网络结构的选择、超参数的设置和优化算法,分析了各算法的优劣,并以Cifar-10数据集为训练样本进行了验证。实验结果表明,合适的训练方式和优化算法能够有效提高网络的准确性和收敛性。最后,在实际输电线图像识别中对最优算法进行了应用并取得了良好的效果。 Deep learning is a hot research field in machine learning.Training and optimization algorithm of deep lear-ning have also been high concern and studied,and has become an important driving force for the development of artificial intelligence.Based on the basic structure of convolution neural network,the selection of activation function,the setting of hyperparameters and optimization algorithms in network training were introduced in this paper.The advantages and disadvantages of each training and optimization algorithm were analyzed and verified by Cifar-10 data set as training samples.Experimental results show that the appropriate training methods and optimization algorithms can effectively improve the accuracy and convergence of the network.Finally,the optimal algorithm was applied in the image recognition of actual transmission line and achieved good result.
作者 仝卫国 李敏霞 张一可 TONG Wei-guo;LI Min-xia;ZHANG Yi-ke(Department of Automation,North China Electric Power University,Baoding,Hebei 071003,China)
出处 《计算机科学》 CSCD 北大核心 2018年第B11期155-159,共5页 Computer Science
基金 河北省自然基金资助
关键词 深度学习 卷积神经网络 激活函数 正则化 超参数 优化算法 Deep learning Convolution neural network Activate function Regularization Hyperparameter,Optimization algorithm
  • 相关文献

参考文献2

二级参考文献102

  • 1HINTON G E, OSINDERO S, TEH Y W. A fast learning algorithm for deep belief nets [ J ]. Neural Computation, 2006,18 ( 7 ) : 1527- 1554.
  • 2BENGIO Y, LAMBLIN P, POPOVICI D, et al. Greedy layer-wise training of deep networks [ C ]//Advances in Neural Information Pro- cessing Systems. Cambridge:MIT Press,2007:153-160.
  • 3VINCENT P, LAROCHELLE H, BENBIO Y, et al. Extracting and composing robust features with denoising autoencoders [ C ]//Proc of the 25th International Conference on Machine [.earning. New York: ACM Press ,2008 : 1096-1103.
  • 4LAROCHELLE H, BENGIO Y, LOURADOUR J, et al. Exploring strategies for training deep neural networks[ J]. Journal of Machine Learning Research,2009,10 (12) : 1-40.
  • 5TAYLOR G, HINTON G E. Factored conditional restricted Bohzmann machines for modeling motion style [ C ]//Proc of the 26th Annual In- ternational Conference on Machine Learning. New York:ACM Press, 2009 : 1025-1032.
  • 6SALAKHUTDINOV R, HINTON G E. Deep Boltzmann machines [ C ]//Proe of the 12th International Conference on Artificial Intelli- gence and Statistics. 2009:448-455.
  • 7TAYLOR G, SIGAL L, FLEET D J, et al. Dynamical binary latent variable models for 3D human pose tracking[ C ]//Proe of IEEE Con- ferenee on Computer Vision and Pattern Recognition. 2010:631-638.
  • 8JARRETY K, KAVUKCUOGLU K, RANZATO M, et al. What is the best multi-stage architecture for object recognition? [ C ]//Pine of the 12th International Conference on Computer Vision. 2009:2146-2153.
  • 9LEE H, GROSSE R, RANGANATH R, et al. Convolutional deep belief networks for scalable unsupervised learning of hierarchical rep- resentations [ C ]//Proc of the 26th International Conference on Ma- chine Learning. New York : ACM Press ,2009:609-616.
  • 10LEE H, PHAM P, LARGMAN Y, et at. Unsupervised feature learn- ing for audio classification using convolutional deep belief networks [C ]//Advances in Neural Information Processing Systems. Cam- bridge : MIT Press ,2009 : 1096-1104.

共引文献296

同被引文献334

引证文献42

二级引证文献193

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部