摘要
应用实分析方法,研究Sándor-Yang平均RGQ关于算术平均A与几何平均G(或调和平均H)凸组合和Sándor-Yang平均RQG与算术平均A与二次平均Q(或反调和平均C)凸组合的序关系,以及两Sándor-Yang平均RGQ和RQG与几何平均G、算术平均A、二次平均Q的序关系,得到了4个精确双向不等式和一个新的不等式链.
This article presents several sharp bounds for the Sándor-Yang mean R GQ in terms of the convex combination of arithmetic mean A and geometric mean G(arithmetic mean A and harmonic mean H),the Sándor-Yang mean R QG in terms of the convex combination of quadratic mean Q and arithmetic mean A(contra-harmonic mean C and arithmetic mean A).A new chain of inequalities for the geometric mean G,arithmetic mean A,quadratic mean Q and two Sándor-Yang means R GQ and R QG are then derived.
作者
张帆
杨月英
钱伟茂
ZHANG Fan;YANG Yueying;QIAN Weimao(School of Architecture Engineering,Huzhou Vocational&Technical College,Huzhou 313000,Zhejiang Province,China;Mechanic Electronic and Automobile Egineering College,Huzhou Vocational&Technical College,Huzhou 313000,Zhejiang Province,China;School of Distance Education,Huzhou Broadcast and TV University,Huzhou 313000,Zhejiang Province,China)
出处
《浙江大学学报(理学版)》
CAS
CSCD
北大核心
2018年第6期665-672,共8页
Journal of Zhejiang University(Science Edition)
基金
浙江省自然科学基金资助项目(LY13A010004)
浙江广播电视大学科学研究课题(XKT-17G26)
湖州职业技术学院校教改课题(2016xj26)