期刊文献+

基于信息素的多Agent车间调度策略 被引量:8

Multi-Agent Job Shop Scheduling Strategy Based on Pheromone
在线阅读 下载PDF
导出
摘要 针对基于合同网协议的传统多Agent方法优化目标单一、通信量大、全局性能优化效果差的缺点,提出了基于信息素的多Agent动态调度策略。该策略通过信息素实现了Agent间的间接协商,减少了通信量,实现了全局的多目标优化。此外,采用该策略同时对生产任务分配阶段和缓冲区工件选择阶段的调度进行了优化,并且考虑了独立的调整时间,更加符合实际且进一步提升了系统整体的优化效果。最后,通过实例仿真验证了上述策略的效率。 Aiming at the disadvantages of traditional multi-Agent methods based on contractual network protocol,such as single target optimization,large communication volumes,and poor global performance optimization,a multi-Agent dynamic scheduling strategy was proposed based on pheromone.The strategy achieved indirect negotiation between Agents by pheromone,reduced traffic and realied global multi-objective optimization.In addition,the task allocation stages and buffer job selection stages were optimized at the same time.The independent setup time was taken into account,which was more practical and further improved the overall system optimization effectiveness.Finally,an example simulation was used to verifiy the efficiency of the strategy.
作者 陈鸣 朱海华 张泽群 金永乔 王盈聪 唐敦兵 CHEN Ming;ZHU Haihua;ZHANG Zequn;JIN Yongqiao;WANG Yingcong;TANG Dunbing(College of Mechanical and Electrical Engineering,Nanjing University of Aeronautics and Astronautics,Nanjing,210016;Shanghai Spaceflight Precision Machinery Institute,Shanghai,201600)
出处 《中国机械工程》 EI CAS CSCD 北大核心 2018年第22期2659-2665,共7页 China Mechanical Engineering
基金 国家自然科学基金资助项目(51805253 U1637211) 航空科学基金资助项目(20161652015)
关键词 信息素 多AGENT系统 多目标优化 独立调整时间 pheromone multi-Agent system multi-objective optimization independent setup time
  • 相关文献

参考文献5

二级参考文献23

  • 1张国海,江平宇,周光辉.多设计任务调度的非合作博弈研究[J].西安交通大学学报,2007,41(3):303-306. 被引量:6
  • 2GAO Jie, GEN Mitsuo, SUN Lin-yan, etal. A hybrid of genetic algorithm and bottleneck shifting for multiobjeetive flexible job shop scheduling problems [J]. Computers & Industrial Engineering, 2007, 53(3) : 149-162.
  • 3BLAZEWlCZ J, FINKE G, HAOPT G. New trends in machine scheduling [J]. European Journal of Operational Research, 1988, 37(2) :303-317.
  • 4CHEN H, IHLOW J, LEHMANN C. A genetic algorithm for flexible job-shop scheduling [C] // IEEE International Conference on Robotics and Automation. Detroit:IEEE, 1999:1120-1135.
  • 5JIA H Z, NEE A Y C, FUH JY H, etal. A modified genetic algorithm for distributed scheduling problems [J]. International Journal of Intelligent Manufacturing, 2003, 14(3):351-362.
  • 6HO N B, TAY J C. GENACE.. An efficient cultural algorithm for solving the flexible job-shop problem [C] //IEEE International Conference on Robotics and Automation. Detroit:lEEE, 2004:1759-1766.
  • 7KACEM I, HAMMADI S, BORNE P. Approach by localization and multiohjective evolutionary optimization for flexible job-shop scheduling problems [J]. IEEE Transactions on Systems, Man, and Cybernetics, Part C, 2002, 32(1):1-13.
  • 8KACEM I, HAMMADI S, BORNE P. Pareto -- optimality approach for flexible job-shop scheduling problems: hybridization of evolutionary algorithms and fuzzy logic [J] . Mathematics and Computers in Simulation, 2002, 60(2):245-276.
  • 9PEZZELLA F, MORGANTI G, CIASCHETTI G. A genetic algorithm for the flexible job-shop scheduling problem [ J ]. Computers & Operations Research, 2008, 35(5):3202-3212.
  • 10Jian A K,Int J Prod Res,1997年,35卷,1期,281页

共引文献98

同被引文献68

引证文献8

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部