期刊文献+

基于双通道卷积神经网络的图像超分辨率增强算法 被引量:2

Enhanced algorithm of image super-resolution based on dual-channel convolutional neural networks
在线阅读 下载PDF
导出
摘要 针对单通道图像超分辨率方法难以同时实现快速的收敛性能以及高质量的纹理细节恢复的问题,提出一种基于双通道卷积神经网络的图像超分辨率增强算法。首先,网络分为深层通道和浅层通道,深层通道用于提取图像的详细纹理信息,浅层通道用于恢复图像的总体轮廓。然后,深层通道利用残差学习的优势,加深网络并降低模型参数规模,消除因网络过深导致的网络退化问题,构造长短期记忆块消除由反卷积层造成的伪影现象和噪声,采用多尺度方式,提取图像不同尺度的纹理信息,而浅层通道只需负责恢复图像主要轮廓。最后,融合两通道损失对网络不断优化,指导网络生成高分辨率图像。实验结果表明,相比基于深层和浅层卷积神经网络的端到端图像超分辨率算法(EEDS),所提算法收敛更迅速,图像边缘和纹理重建效果明显提升,其峰值信噪比(PSNR)和结构相似性(SSIM)在Set5数据集上平均提高了0. 15 d B、0. 003 1,在和Set14数据集上平均提高了0. 18 d B、0. 003 5。 The single-channel image super-resolution method can not achieve both fast convergence and high quality texture detail restoration.In order to solve the problem,a new Enhanced algorithm of image Super-Resolution based on Dual-channel Convolutional neural network(EDCSR)was proposed.Firstly,the network was divided into deep channel and shallow channel.Deep channel was used to extract detailed texture information of images,and shallow channel was mainly used to restore the overall contour of images.Then,the advantages of residual learning were used by the deep channel to deepen network and reduce parameters of model,eliminate the network degradation problem caused by too deep network.The long and short-term memory blocks were constructed to eliminate the artifacts and noise caused by the deconvolution layer.The texture information of image at different scales were extracted by a multi-scale method,while the shallow channel only needed to be responsible for restoring the main contour of image.Finally,the dual-channel losses were integrated to optimize the network continuously,which guided the network to generate high-resolution images.The experimental results show that,compared with the End-to-End image super-resolution algorithm via Deep and Shallow convolutional networks(EEDS),the proposed algorithm converges more quickly,image edge and texture reconstruction effects are significantly improved,the Peak Signal-to-Noise Ratio(PSNR)and Structural SIMilarity(SSIM)are improved averagely by0.15dB and0.0031on data set Set5,while these are improved averagely by0.18dB and0.0035on data set Set14.
作者 贾凯 段新涛 李宝霞 郭玳豆 JIA Kai;DUAN Xintao;LI Baoxia;GUO Daidou(College of Computer and Information Engineering, Henan Normal University, Xinxiang Henan 453007, China)
出处 《计算机应用》 CSCD 北大核心 2018年第12期3563-3569,共7页 journal of Computer Applications
基金 国家自然科学基金资助项目(U1204606) 河南省科技发展重点项目(172102210335) 河南省高校重点科研项目(16A520058)~~
关键词 超分辨率 双通道 残差学习 反卷积 卷积核参数 长短期记忆块 super-resolution dual-channel residual learning deconvolution convolution kernel parameter long and short term memory block
  • 相关文献

参考文献1

二级参考文献6

共引文献69

同被引文献8

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部