期刊文献+

基于PCA的离散小波自回归情感识别 被引量:2

Discrete Wavelet and Auto-Regressive Based on Principal Component Analysis for Emotion Recognition
在线阅读 下载PDF
导出
摘要 针对情感识别进行研究,提出基于主成分分析法(PCA)过滤小波变换结合自回归模型提取的信号特征方法,并基于梯度提升分类树以实现情感分类.将特征提取的重点放在脑电信号变化情况以及小波分量变化情况作为脑电信号特征.采用Koelstra等提出的分析人类情绪状态的多模态标准数据库DEAP,提取8种正负情绪代表各个脑区的14个通道脑电数据.结果表明,算法对8种情感两两分类识别平均准确率为95.76%,最高准确率为98.75%,可为情感识别提供帮助. The research is carried out for the purpose of emotion recognition, and the signal feature method of wavelet filtering transformation combined with autoregressive model extraction is proposed on the basis of Principal Component Analysis (PCA). Besides, sentiment classification is realized on the basis of gradient promotion classification tree. The focus of feature extraction is laid on the changes of Electro Encephalo Gram (EEG) signals and the changes of wavelet components as features of EEG signals. The multimodal standard database DEAP proposed by Koelstra et al. to analyze human emotional state is adopted to extract eight positive and negative emotions to represent 14 channels of EEG data in each brain region. The results suggest that the average accuracy of the algorithm for 8 kinds of emotions in pairwise classification is 95.76%, and the highest accuracy is 98.75%, making it possible to help emotional recognition.
作者 刘一 谢懿 LIU Yi;XIE Yi(School of Electronics and Information,Guangdong Polytechnic Normal University,Guangzhou 510665,China)
出处 《计算机系统应用》 2019年第5期119-124,共6页 Computer Systems & Applications
基金 2018年度国家级大学生创新创业训练计划(201810588006)~~
关键词 自回归 小波变换 主成分分析 情感评估 auto-regressive wavelet transform principal component analysis emotion assessment
  • 相关文献

参考文献4

二级参考文献79

  • 1江朝晖,冯焕清,刘大路,王涛.睡眠脑电的关联维数和近似熵分析[J].生物医学工程学杂志,2005,22(4):649-653. 被引量:19
  • 2罗跃嘉,黄宇霞,李新影,李雪冰.情绪对认知加工的影响:事件相关脑电位系列研究[J].心理科学进展,2006,14(4):505-510. 被引量:77
  • 3刘晓旻,谭华春,章毓晋.人脸表情识别研究的新进展[J].中国图象图形学报,2006,11(10):1359-1368. 被引量:62
  • 4刘玉娟,方富熹.情绪的语音交流[J].中国行为医学科学,2007,16(4):374-376. 被引量:4
  • 5胡广书.数字信号处理[M].北京:清华大学出版社,2007.
  • 6Sisodiya S, Lin WR, Harding B, et al. Drug resistance in epilepsy: expression of drug resistance proteins in common causes of refractory epilepsy[J]. Brain, 2002, 125:22 -31.
  • 7Walker JE, Kozlowski GP. Neurofeedback treatment of epilepsy [ J]. Child and Adolescent Psychiatric clinics of North America, 2005, 4(1) :163 -176.
  • 8Diambra L, Bastos de Figueiredo JC, Malta CP. Epileptic activity recognition in EEG recording [ J]. Physica A, 1999, 273 : 495 - 505.
  • 9Koukkou M, Lehmann D, Wackermann J, et al. Dimensional complexity of EEG brain mechanisms in untreated schizophrenia[J].Bio Psychiatry, 1993, 33(6) : 397 -407.
  • 10Grassberger P, Procaccia I. Measuring the strangeness of strange attractors [J]. Physica D, 1983, 9(1-2): 189-208.

共引文献100

同被引文献16

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部