摘要
采用超声波辅助半连续铸造工艺制备直径310 mm的6013铝合金铸锭,利用金相显微镜、扫描电镜、电子探针分析仪和拉伸试验机,研究了超声波功率对半连续铸造6013铝合金铸锭显微组织与力学性能的影响:结果表明:超声波辅助半连续铸造工艺可以细化铸锭的晶粒和第二相,提高a-Al基体上的元素固溶度。超声波功率越大,铸锭的晶粒和第二相越细小,第二相分布越均匀,α-Al基体中的元素固溶度越高,铸锭的拉伸力学性能越高。当超声波功率增大至350 W时,铸锭的抗拉强度为261.9 N/mm^2,屈服强度为225.8 N/mm^2,伸长率为20. 9%,与未施加超声波的铸锭相比,此时铸锭的抗拉强度、屈服强度和伸长率分别提高了 10.7%、13.6%、14.8%。
The 6013 aluminum alloy ingot with a diameter of 310 mm was prepared by the semi-continuous casting process with ultrasonic treatment. The effects of ultrasonic power on microstructure and mechanical properties of 6013 aluminum alloy ingot were investigated by metallographic microscope, scanning electron microscope, electron probe microanalyzer and tensile testing machine.The results show that the grains and secondary phase of ingot can be refined by the ultrasonic and the solid solubility of elements in α-Al matrix can be improved. The stronger the ultrasonic power is, the finer the grain and the secondary phase are, the more uniform the distribution of the secondary phase is, the higher the solid solubility of the elements in the α-Al matrix is, the higher the tensile properties of the ingot are. When the ultrasonic power is increased to 350 W, the tensile strength, yield strength and elongation of the ingot are 261.9 N/mm^2 , 225. 8 N/mm^2 and 20.9%, respectively. Compared with the ingot without ultrasonic treatment, the tensile strength, yield strength and elongation of the ingot are increased by 10.7%, 13.6% and 14.8%,respectively.
作者
陆向科
王孟君
李新涛
康跃华
王顺成
LU Xiang-ke;WANG Meng-jun;LI Xin-tao;KANG Yue-hua;WANG Shun-cheng(School of Materials Science and Engineering,Central South University,Changsha 410083,China;Guangdong Institute of Materials and Processing,Guangzhou 510650,China)
出处
《轻合金加工技术》
CAS
北大核心
2019年第5期25-29,51,共6页
Light Alloy Fabrication Technology
基金
广东省科学院院属骨干科研机构创新能力建设项目(2017GDASCX-0117)
广东省科技厅公益研究与能力建设项目(2017A070701029)
广东省科技计划项目(2013B010102026、2014B090907008)
佛山市科技创新项目(2016AG101761)
关键词
6013铝合金
半连续铸造
超声波功率
晶粒细化
均匀化
6013 aluminum alloy
semi-continuous casting
ultrasonic power
grain refinement
homogenization