期刊文献+

基于机器学习的SQL注入检测方案 被引量:6

SQL injection detection scheme based on machine learning
在线阅读 下载PDF
导出
摘要 为有效检测SQL注入(structured query language injection,SQLI),对机器学习的基本方法进行研究,通过朴素贝叶斯(Naive Bayes)分类算法对SQLI检测分类。对用户可能输入的字符序列,经特征提取与词法分析后,生成特定顺序标记(Token)的特征向量,通过朴素贝叶斯模型对其分类,评估出SQLI与非SQLI (non-SQLI)两个类别。对预处理阶段加以细化,包括对特征提取方法的改进与词法分析标记原子化;在机器学习阶段,针对预处理后的特征向量,提出一种可去噪声的SQLI检测算法。实验结果表明,在给定的预先确定了SQL语句类别的数据集的情况下,该方案可以有效地检测SQLI攻击。 To detect SQL injection (structured query language injection, SQLI) effectively, the basic method of machine learning was studied, and SQLI detection was classified using Naive Bayes classification algorithm. After the feature extraction and lexical analysis, the character sequence that the user may input generated a feature vector of a specific order token (Token), it was classified wsing the naive Bayes model, and both SQLI and non-SQLI categories were evaluated. The preprocessing phase was refined, including the improvement of the feature extraction method and Token atomization of the lexical analysis. In the machine learning phase, a pre-processed eigenvector was proposed to denoise the SQLI detection algorithm. Experimental results show that the scheme can effectively detect SQLI attacks in a given data set with predetermined SQL statement categories.
作者 胡峰松 李苍 王冕 全夏杰 徐青云 HU Feng-song;LI Cang;WANG Mian;QUAN Xia-jie;XU Qing-yun(College of Compute Science and Electronic Engineering,Hunan University,Changsha 410082,China;Digital Media Technology Lab,Hunan University,Changsha 410082,China)
出处 《计算机工程与设计》 北大核心 2019年第6期1554-1558,共5页 Computer Engineering and Design
关键词 SQL注入 特征提取 词法分析 标记 朴素贝叶斯分类 机器学习 SQL injection feature extraction lexical analysis Token Naive Bayes classification machine learning
  • 相关文献

参考文献6

二级参考文献55

共引文献67

同被引文献45

引证文献6

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部