期刊文献+

ECMWF全风速场集合预报结果的偏差订正与预报不一致性分析 被引量:9

Calibration and inconsistency analysis of ECMWF wind speed ensemble forecasts
在线阅读 下载PDF
导出
摘要 采用卡尔曼滤波类型自适应误差订正法和滑动自适应权重法,对2012年夏季ECMWF10m全风速场集合预报结果进行偏差订正,对订正前后的预报结果进行评估,并通过Jumpiness指数对预报结果订正前后的预报不一致性特征进行分析。结果表明,卡尔曼滤波类型自适应误差订正法能有效降低集合预报的均方根误差,且当起报时刻为00时对中低纬度地区的订正效果更显著,当起报时刻为12时对中高纬度地区的订正效果更明显;卡尔曼滤波类型自适应误差订正法能有效改善Talagrand的U型或L型分布;由均方根误差分析结果知道,ECMWF10m全风速场集合预报本身存在较大的预报不一致性,经过卡尔曼滤波类型自适应误差订正后,集合预报的预报不一致性明显降低,偏差订正可有效改善集合预报的预报不一致性,且随着预报时效的延长,卡尔曼滤波误差法对预报不一致性的改善效果更加明显;从预报不一致性的发生次数特征来看,单点跳跃出现的次数最多,异号三点跳跃的次数最少;经过卡尔曼滤波类型自适应误差订正后,单点跳跃、异号两点跳跃、异号三点跳跃次数都有所下降。 Based on the 10 m wind speed forecasts during the summer of 2012 from the ECMWF in the TIGGE datasets,a Kalman filter bias-correction combining with a sliding weight method has been done to calibrate the ensemble perturbed forecasts.The effect of this calibration method is examined.Then,the jumpiness index is used to analyse the results before and after calibration.Results show that:(1)In general,the calibration method can effectively reduce the RMSEs of the 10 m wind speed ensemble forecasts at different start times.When the start time is 0000 UTC,the correction results are better in the middle and low latitudes.When the start time is 1200 UTC,the correction results are better in the middle and high latitudes.(2)The calibration method has a good effect on improving the dispersion of ensemble members.The Talagrand pictures show that U-type and L-type distributions decrease after calibration.(3)Analysis of RMSE shows that the 10 m wind speed ensemble forecasts from ECMWF has great inconsistency of prediction.After calibration,the period-average forecast inconsistency indices of ensemble mean are lower than before,showing that the Kalman filter bias-correction method can reduce the forecast inconsistency of the 10 m wind speed ensemble forecasts.(4)In terms of the period-average inconsistency features of the 10 m wind speed ensemble forecasts from ECMWF,all average period-average inconsistency indices increase with the forecast range,in agreement with the practical experience that the forecasts are usually more consistent at short forecast ranges.(5)The calibration method has better effects on reducing the frequencies of flip,flip-flop and flip-flop-flip.The flip happens more frequently than the other two,and the frequency of flip-flop-flip is the lowest.
作者 任晨辰 段明铿 REN Chenchen;DUAN Mingkeng(Nanjing Xinda Meteorological Science and Technology Co.,Ltd.,Nanjing 210044,China;Key Laboratory of Meteorological Disaster,Ministry of Education (KLME)/Joint International Research Laboratory of Climate and Environment Change (ILCEC)/Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD),Nanjing University of Information Science & Technology,Nanjing 210044,China;State Key Laboratory of Severe Weather,Chinese Academy of Meteorological Sciences,Beijing 100081,China)
出处 《大气科学学报》 CSCD 北大核心 2019年第3期360-369,共10页 Transactions of Atmospheric Sciences
基金 国家自然科学基金资助项目(91437218 41675056) 灾害天气国家重点实验室开放课题(2014LASW-A01)
关键词 卡尔曼滤波类型自适应误差订正法 全风速场 预报不一致性 Jumpiness指数 集合预报 Kalman filter bias-correction method wind speed forecast inconsistency Jumpiness index ensemble prediction
  • 相关文献

参考文献27

二级参考文献346

共引文献1049

同被引文献122

引证文献9

二级引证文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部