期刊文献+

L1/2正则化的逐次高光谱图像光谱解混 被引量:3

Successive spectral unmixing for hyperspectral images based on L1/2 regularization
在线阅读 下载PDF
导出
摘要 由于高光谱遥感图像的混合程度较高,使得传统的非负矩阵欠逼近(Nonnegative Matrix Underapproximation,NMU)算法所提取的基本成分仍然"不纯",且易受噪声影响。针对这些不足,提出了一种基于L1/2正则化的软阈值NMU逐次光谱解混算法。首先,通过引入丰度的L1/2正则项来增强算法的地物区分能力,进而提高所分离地物的纯度;其次,利用软阈值惩罚函数代替NMU中的残差非负约束,通过调节惩罚因子来控制非负元素的数量,从而提高算法的抗噪性能。在仿真数据和实测数据上的实验结果表明,即使在有噪声的条件下,该算法也能得到较好的分离结果。 Due to the high mixed degree of hyperspectral remote sensing images,the basic component extracted by the traditional Nonnegative Matrix Underapproximation(NMU)algorithm is still"impurity",moreover,it is susceptible to noise.To overcome the above shortcomings,a method named L1/2-regularized soft-thresholding NMU for hyperspectral unmixing was proposed.Firstly,the L1/2 regularization term for abundance was introduced to improve the distinguishing ability,which can further improve the purity of the extracted components.Secondly,the soft-threshold penalty function was introduced to replace the residual nonnegative constraint in NMU.By adjusting the penalty factor,the number of non-negative elements could be well controlled,which could improve the anti-noise ability.Experimental results on the simulational and real datasets show that the proposed algorithm can obtain better separation results even under noisy conditions.
作者 汤毅 粘永健 何密 王倩楠 许可 Tang Yi;Nian Yongjian;He Mi;Wang Qiannan;Xu Ke(Beijing Education Network and Information Center,Beijing 100089,China;School of Biomedical Engineering and Imaging Medicine,Army Medical University (Third Military Medical University),Chongqing 400038 China;College of Electronic Science,National University of Defense Technology,Changsha 410073,China)
出处 《红外与激光工程》 EI CSCD 北大核心 2019年第7期286-294,共9页 Infrared and Laser Engineering
基金 重庆市基础科学与前沿技术一般项目(cstc2016jcyjA0539)
关键词 高光谱遥感 光谱解混 非负矩阵欠逼近 hyperspectral remote sensing spectral unmixing nonnegative matrix underapproximation
  • 相关文献

参考文献1

二级参考文献16

  • 1张萌,赵慧洁,李娜.高光谱数据光谱分辨率对矿物识别的影响分析[J].红外与激光工程,2006,35(z4):493-498. 被引量:7
  • 2张兵.高连如.高光谱图像分类与目标探测[M].北京:科学出版社,2011.
  • 3Boardman J. Automating spectral unmixing of AVIRIS data using convex geometry concepts[C]//JPL Airborne Geoscience Workshop, JPL Publication 93-26, 1993, 1: 11-14.
  • 4Winter M E. N-Find: an algorithm for fast autonomous spectral end member determination in hyperspectral data[C]// SPIE' s International Sym- posium on Optical Science, Engineering, and Instrumentation. International Society for Optics and Photonics, 1999: 266-275.
  • 5Nascimento J M P, Bioucas-Dias J M. Vertex component analysis: A fast algorithm to unmix hyperspectral data [J]. IEEE Transactions on Geo- science and Remote Sensing, 2005, 43(4): 898-910.
  • 6Bayliss J, Gualtieri J. A nalyzing hyperspectral data with independent component analysis [C]//26th AIPR Workshop: Exploiting New Image Sources and Sensors. International Society for Optics and Photonics, 1998: 133-143.
  • 7Bioucas-Dias J M, Plaza A, Dobigeon N. Hyperspectral unmixing overview: geometrical, staffs- tical and sparse regression-based approaches [J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2012, 5(2): 354-379.
  • 8Lee D D, Seung H S. Algorithms for non- negative matrix factorization[J]. Advances in Neural Information Processing Systems, 2001, 13: 556-562.
  • 9Chert Z, Cichocki A. Non-negative matrix factorization with temporal smoothness and/or spatial decorrelation constraints [J]. Laboratory for Advanced Brain Signal Processing, RIKEN, Tech Rep, 2005.
  • 10Li M, Qi H. End-member extraction from highly mixed data using minimum volume constrained nonnegative matrix factorization [J]. IEEE Tran- sactions on Geoscience and Remote Sensing, 2007, 45(3): 765-777.

共引文献5

同被引文献27

引证文献3

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部