期刊文献+

基于钌配合物作荧光探针测定半胱氨酸的新型DNA荧光传感器 被引量:6

A Novel DNA Fluorescence Sensor for the Determination of Cysteine Based on Ruthenium Complexes as Fluorescent Probe
在线阅读 下载PDF
导出
摘要 半胱氨酸是人体内不可缺少的一种含巯基氨基酸,建立简单、灵敏测定半胱氨酸的传感器具有重要意义。本文以钌配合物Ru(phen)2(dppx)^2+(phen=1,10-phenanthroline,dppx=7,8-dimethyldipyridophenazine)作为荧光探针,以银离子稳定的含错配胞嘧啶碱基的自互补DNA序列作为传感元件,利用半胱氨酸与银离子相互作用,诱导银离子稳定的双链DNA解链为单链DNA,被双链DNA保护的Ru(phen)2(dppx)^2+荧光强度明显减弱,据此建立了一种测定半胱氨酸的新型DNA荧光传感器。溶液在610nm处的荧光强度与半胱氨酸的浓度在0.0~160.0 nmol/L范围内呈良好的线性关系,线性方程为:If=-0.122 c+57.09,相关系数(r)为0.9928,检出限(3δ/S)为13.8 nmol/L。 Cysteine is an indispensable amino acid containing sulfhydryl in human body. It is important to establish a simple and sensitive sensor for the determination of cysteine. Using the ruthenium complexes Ru(phen)2(dppx)^2+(phen =1,10-phenanthroline,dppx= 7,8-dimethyldipyridophenazine) as a fluorescence probe,and using the complementary DNA sequence containing the mismatched cytosine base and being stabilized by silver ions as the sensing element,we utilize the interaction of cysteine and silver ions to induce double-stranded DNA change into single-stranded DNA,the fluorescence intensity of Ru(phen)2(dppx)^2+ protected by double-stranded DNA decrease significantly,a novel DNA fluorescence sensor for determination of cysteine is established. The fluorescence intensity of the solution at the wavelength of 600 nm has a good linear relationship with the concentration of cysteine in the range of 0.0 ~160.0 nmol/L.The linear equation was If =-0.122 c+57.09,the correlation coefficient(r) is 0.9928,and the detection limit(3δ/S) is 13.8 nmol/L.
作者 肖志友 司恒丹 王建文 张鑫 肖茹峄 刘益飞 Xiao Zhiyou;Si Hengdan;Wang Jianwen;Zhang Xin;Xiao Ruyi;Liu Yifei(School of Chemical Engineering,Guizhou Institute of Technology,Guiyang 550003,China)
出处 《山东化工》 CAS 2019年第15期100-102,104,共4页 Shandong Chemical Industry
基金 贵州省科学技术基金资助项目(黔科合J字[2013]2263号) 贵州理工学院高层次人才科研启动经费项目(XJGC20181213) 贵州理工学院大学生创新训练项目(201814440235)
关键词 钌配合物 半胱氨酸 DNA荧光传感器 ruthenium complexes cysteine DNA fluorescence sensor
  • 相关文献

参考文献3

二级参考文献61

  • 1Czarnik A W.Chem Biol[J],1995,2(7):423.
  • 2Iqbal S S,Mayo M W,Bruno J G,Bronk B V,Batt C A,Chambers J P.Biosens Bioelectron[J],2000,15(11-12):549.
  • 3Liu J,Cao Z,Lu Y.Chem Rev[J],2009,109(5):1948.
  • 4Wang Y,Li Z,Hu D,Lin C T,Li J,Lin Y.J Am Chem Soc[J],2010,132(27):9274.
  • 5White B R,Liljestrand H M,Holcombe J A.Analyst[J],2008,133(1):65.
  • 6Chen X,Liu H,Zhou X,Hu J.Nanoscale[J],2010,2(12):2841.
  • 7An T,Kim K S,Hahn S K,Lim G.Lab Chip[J],2010,10(16):2052.
  • 8Li H,Zhang Y,Luo Y,Sun X.Small[J],2011,7(11):1562.
  • 9Nakayama D,Takeoka Y,Watanabe M,Kataoka K.Angew Chem,Int Ed Engl[J],2003,42(35):4197.
  • 10Suzuki M,Watanabe N,Tamiya E,Kataoka T,Tokunaga T,Karube I.Appl Biochem Biotechnol[J],1987,15(3):191.

共引文献14

同被引文献49

引证文献6

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部