期刊文献+

基于Relief属性重要度的快速约简算法 被引量:2

Fast Attribute Reduction Algorithm Based on Importance of Relief Attribute
在线阅读 下载PDF
导出
摘要 邻域粗糙集是经典Pawlak粗糙集的扩展,能够有效的处理数值型数据。因为引入了邻域粒化的概念,使用邻域粗糙集模型计算样本邻域度量属性重要度时,需要不断反复的对负域中的样本进行邻域划分操作,算法计算量很大。为此提出了一种基于Relief算法属性重要度的快速属性约简算法,降低计算邻域的算法时间复杂性。通过和现有算法运用多组UCI标准数据集进行比较,实验结果表明,在不降低分类精度的前提下,该算法能更快速地得到属性约简。 Neighborhood rough set is an extension of classical Pawlak rough set, which can deal with nu merical data effectively. However, because the concept of neighborhood granulation is introduced. When the neighborhood rough set model is used to calculate the neighborhood of samples to measure the impor tance of attributes, the neighborhood partition operation of samples in the negative domain should be repeated. Therefore, a fast attribute reduction algorithm based on Relief algorithm is proposed, which reduces the time complexity of calculating the neighborhood. Compared with the existing algorithms using multiple sets of UCI standard data sets, the experimental results show that the algorithm can get attribute reduction more quickly without reducing the classification accuracy.
作者 林芷欣 刘遵仁 纪俊 LIN Zhi-xin;LIU Zun-ren;JI Jun(College of Computer Science and Technology, Qingdao University, Qingdao 266071, China)
出处 《青岛大学学报(自然科学版)》 CAS 2019年第3期8-13,共6页 Journal of Qingdao University(Natural Science Edition)
基金 国家自然科学基金项目(批准号:61503208)资助
关键词 邻域粗糙集 邻域计算 RELIEF算法 属性重要度 属性约简 neighborhood rough set neighborhood computing Relief algorithm attribute significance attribute reduction
  • 相关文献

参考文献9

二级参考文献67

共引文献409

同被引文献29

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部