期刊文献+

基于HOG特征的学生课堂状态检测研究 被引量:2

Research on the Detection of Students’ Classroom States Based on HOG Features
在线阅读 下载PDF
导出
摘要 提出一种基于HOG特征的学生课堂状态图像检测方法,从课堂监控图像中提取反映课堂教学效果与学生课堂状态的相关信息,为后续行为状态识别提供基础数据。首先,截取包含学生完整课堂状态的图像块,提取其HOG特征;然后,运用Adaboost分类算法训练级联分类器;最后使用图像金字塔技术滑动检测,检出学生听课状态窗口。 This paper proposes a detection method of students’ classroom states based on HOG features,by extracting the relevant information reflecting classroom teaching effect and students’ classroom state from classroom monitoring images to provide data foundation for subsequent behavior status recognition. Firstly,intercept the image blocks containing a student’s complete classroom status,extract its HOG features;then use Adaboost classification algorithm to train the cascaded classifier;finally the image pyramid technology is used to detect the status window of the student’s lecture.
作者 陈杰 谢日敏 CHEN Jie;XIE Rimin(Information Technology Center of Fujian Business College, Fuzhou 350012, China;Department of Information Engineering, Fujian Business College, Fuzhou 350012, China)
出处 《重庆科技学院学报(自然科学版)》 CAS 2019年第4期89-92,共4页 Journal of Chongqing University of Science and Technology:Natural Sciences Edition
基金 福建省中青年教师教育科研项目“基于校园视频监控的物体检测识别关键技术研究”(JT180636)
关键词 课堂状态 图像检测 HOG特征 ADABOOST算法 级联分类器 classroom states image detection HOG features Adaboost algorithm cascade classifier
  • 相关文献

参考文献2

二级参考文献76

  • 1Marr D.Vision:A Computational Investigation Into the Human Representation and Processing of Visual Information.Cambridge:The MIT Press,2010.
  • 2LeCun Y,Bottou L,Bengio Y,Haffner P.Gradient-based learning applied to document recognition.Proceedings of the IEEE,1998,86(11):2278-2324.
  • 3Ferrari V,Jurie F,Schmid C.From images to shape models for object detection.International Journal of Computer Vision,2009,87(3):284-303.
  • 4Latecki L J,Lakamper R,Eckhardt U.Shape descriptors for non rigid shapes with a single closed contour//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR).Hilton Head,USA,2000,1:424-429.
  • 5Krizhevsky A.Learning Multiple Layers of Features from Tiny Images[M.S.dissertation].University of Toronto,2009.
  • 6Torralba A,Fergus R,Freeman W T.80 million tiny images:A large dataset for non-parametric object and scene recognition.IEEE Transactions on Pattern Analysis and Machine Intelligence,2008,30(11):1958-1970.
  • 7Li FebFei,Fergus R,Perona P.Learning generative visual models from few training examples:An incremental Bayesian approach tested on 101 object categories//Proceedings of the Computer Vision and Pattern Recognition (CVPR),Workshop on Generative-Model Based Vision.Washington,USA,2004:178.
  • 8Griffin G,Holub A D,Perona P.The Caltech 256.Caltech Technical Report CNS-TR-2007-001.
  • 9Lazebnik S,Schmid C,Ponce J.Beyond bags of features:Spatial pyramid matching for recognizing natural scene categories//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR).New York,USA,2006:2169-2178.
  • 10Li Fei-Fei,Perona P.A Bayesian hierarchical model for learning natural scene categories//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR).Washington,USA,2005:524-531.

共引文献234

同被引文献4

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部