期刊文献+

基于径向基函数神经网络辅助容积卡尔曼滤波的多自主水下航行器协同定位方法 被引量:9

A Cooperative Localization Method for AUVs Based on RBF Neural Network-assisted CKF
在线阅读 下载PDF
导出
摘要 在多自主水下航行器(AUV)协同定位系统中,针对协同定位性能受到系统内部和外部等多种因素制约的问题,提出一种基于径向基函数(RBF)神经网络辅助容积卡尔曼滤波(CKF)的多AUV协同定位方法。当基准参考位置可用时,通过非线性CKF得到滤波新息、预测误差和滤波增益作为RBF神经网络输入层的输入,滤波误差值作为输出对RBF神经网络进行训练;当基准信号中断时,利用训练好的RBF神经网络,对CKF的滤波状态估计值进行补偿,进而得到新的估计状态。利用湖试数据,模拟多AUV协同定位系统输入存在误差情况下的协同定位实验。实验结果表明,所提方法与无RBF辅助的CKF方法相比,平均定位误差减小70%,具有更好的准确性和稳定性。 For cooperative localization of autonomous underwater vehicles (AUVs), a multi-AUV cooperative localization method based on radial basis function (RBF) neural network-assisted cubature Kalman filter (CKF) is proposed to solve the problem that the cooperative localization performance is restricted by various factors, such as internal and external factors of cooperative localization system. When a basic reference position is available, the filtering innovation, prediction error and filtering gain, which are extracted from the nonlinear filtering CKF, are used as the inputs of the input layer of RBF neural network, and the filtering error value is used as an output to train the RBF neural network. When the reference signal is interrupted, the trained RBF neural network is used to compensate the estimated value of CKF filter state, and then a new estimated state is obtained. The cooperative localization experiment with the input error of multi-AUV cooperative localization system was simulated based on the lake area test data. The experimental results show that the average positioning error of the proposed method is reduced by 70% compared to average positioning error of RBF without CKF.
作者 徐博 李盛新 金坤明 王连钊 XU Bo;LI Shengxin;JIN Kunming;WANG Lianzhao(College of Automation, Harbin Engineering University, Harbin 150001, Heilongjiang, China)
出处 《兵工学报》 EI CAS CSCD 北大核心 2019年第10期2119-2128,共10页 Acta Armamentarii
基金 中国博士后科学基金项目(2012M510083) 国家自然科学基金项目(61203225) 黑龙江省自然科学基金项目(QC2014C069) 装备发展部领域基金项目(61403110306)
关键词 自主水下航行器 协同定位 径向基函数 容积卡尔曼滤波 autonomous underwater vehicle cooperative localiztion radial basis function cubature Kalman filter
  • 相关文献

参考文献5

二级参考文献82

  • 1金保明.BP神经网络在闽江十里庵流量预测中的应用[J].水电能源科学,2010,28(9):12-14. 被引量:10
  • 2马野,王孝通,戴耀.基于UKF的神经网络自适应全局信息融合方法[J].电子学报,2005,33(10):1914-1916. 被引量:16
  • 3耿艳芬,王志力,金生.河网洪水预报径向基函数人工神经网络方法[J].大连理工大学学报,2006,46(2):267-271. 被引量:4
  • 4Schmidt S F. The Kalman filter-its recognition and development for aerospace applications[J].Journal of Guidance,Control & Dynamics,1981,(01):4-7.
  • 5Gordon N J,Salmond D J,Smith A F M. Novel approach to nonlinear/non-Gaussian Bayesian State estimation[J].IEE Proceedings Part F-radar and Signal Proceeding,1993,(02):107-113.
  • 6Julier S J,Uhlman J K. A new extension of the Kalman filter to nonlinear systems[J].Proc of the Society of Photooptical Instrumentation Engineers,1997,(03):182-193.
  • 7Norgaard M,Poulsen N K,Ravn O. New developments in state estimation for nonlinear systems[J].Automatica,2000,(11):1627-1628.doi:10.1016/S0005-1098(00)00089-3.
  • 8Ito K,Xiong K Q. Gaussian filters for nonlinear filtering problems[J].IEEE Transactions on Automatic Control,2000,(05):910-927.doi:10.1109/9.855552.
  • 9Kotecha J H,Djuric P A. Gaussian particle filtering[J].IEEE Transactions on Signal Processing,2003,(10):2592-2601.doi:10.1109/TSP.2003.816758.
  • 10Ienkaran Arasaratnam,Simon Haykin. Cubature Kalman filters[J].IEEE Transactions on Automatic Control,2009,(06):1254-1269.

共引文献110

同被引文献101

引证文献9

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部