期刊文献+

Fault detection in flotation processes based on deep learning and support vector machine 被引量:16

基于深度学习和支持向量机的浮选过程故障诊断方法(英文)
在线阅读 下载PDF
导出
摘要 Effective fault detection techniques can help flotation plant reduce reagents consumption,increase mineral recovery,and reduce labor intensity.Traditional,online fault detection methods during flotation processes have concentrated on extracting a specific froth feature for segmentation,like color,shape,size and texture,always leading to undesirable accuracy and efficiency since the same segmentation algorithm could not be applied to every case.In this work,a new integrated method based on convolution neural network(CNN)combined with transfer learning approach and support vector machine(SVM)is proposed to automatically recognize the flotation condition.To be more specific,CNN function as a trainable feature extractor to process the froth images and SVM is used as a recognizer to implement fault detection.As compared with the existed recognition methods,it turns out that the CNN-SVM model can automatically retrieve features from the raw froth images and perform fault detection with high accuracy.Hence,a CNN-SVM based,real-time flotation monitoring system is proposed for application in an antimony flotation plant in China. 对浮选过程进行故障诊断有助于选矿厂减少药剂消耗,增加有效矿物的回收以及降低现场操作工人的劳动强度等。针对传统的浮选过程故障诊断方法大都是对单一的泡沫特征(如泡沫颜色,形状,大小,纹理等)进行人工提取,存在精度低,效率低等缺陷。本文提出一种基于深度学习和支持向量机的浮选过程故障诊断方法。该模型利用卷积神经网络(CNN)自动提取泡沫图像特征,利用支持向量机(SVM)根据提取的图像特征给出诊断结果。通过与现存的浮选过程诊断方法相比较,本文提出的CNN-SVM相结合的方法,测试性能优于其他识别模型。
作者 LI Zhong-mei GUI Wei-hua ZHU Jian-yong 李中美;桂卫华;朱建勇(School of Automation,Central South University,Changsha 410083,China;School of Electrical and Automation Engineering,East China Jiaotong University,Nanchang 330013,China)
出处 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第9期2504-2515,共12页 中南大学学报(英文版)
基金 Projects(61621062,61563015)supported by the National Natural Science Foundation of China Project(2016zzts056)supported by the Central South University Graduate Independent Exploration Innovation Program,China
关键词 flotation processes convolutional neural network support vector machine froth images fault detection 浮选过程 卷积神经网络 支持向量机 泡沫图像 故障诊断
  • 相关文献

参考文献3

二级参考文献28

  • 1林小竹,谷莹莹,赵国庆.煤泥浮选泡沫图像分割与特征提取[J].煤炭学报,2007,32(3):304-308. 被引量:28
  • 2KAARTINEN J,HATONEN J,HYOTYNIEMI H,et al.Machine vision based control of zinc flotation--A case study[J].Control Engineering Practice,2006,14(12):1455-1466.
  • 3BONIFAZI G,SERRANTI S,VOLPE F,et al.Characterization of flotation froth colour and structure by machine vision[J].Computers & Geosciences,2001,27(9):1111-1117.
  • 4SADR-KAZEMI N,CILLIERS J J.An image processing algorithm for measurement of flotation froth bubble size and shape distributions[J].Minerals Engineering,1997,10(10):1075-1083.
  • 5VENTURA-MEDINA E,CILLIERS J J.Calculation of the specific surface area in flotation[J].Minerals Engineering,2000,13(3):265-275.
  • 6WANG W,BERGHOLM F,YANG B.Froth delineation based on image classification[J].Minerals Engineering,2003,16(3):1183-1192.
  • 7SALEMBIER P,SERRA J.Flat zones filtering connected operators and filters by reconstruction[J].IEEE Transactions on Image Processing,1995,4(8):1153-1160.
  • 8VINCENT L.Morphological grayscale reconstruction in image analysis:applications and efficient algorithms[J].IEEE Transactions on Image Processing,1993,2(2):176-201.
  • 9VINCENT L,SOILLE P.Watersheds in digital spaces:An Efficient algorithm based on immersion simulations[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1991,13(6):583-598.
  • 10MANIKANDAN J, VENKATARAMANI B. Study and evaluation of a multi-class SVM classifier using dimin- ishing learning technique [ J]. Neurocomputing, 2010, 73(10-12) :1676- 1685.

共引文献50

同被引文献175

引证文献16

二级引证文献82

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部