期刊文献+

车辆轨迹数据提取道路交叉口特征的决策树模型 被引量:16

Decision tree model for extracting road intersection feature from vehicle trajectory data
在线阅读 下载PDF
导出
摘要 众源车辆轨迹数据隐含最新的道路分布信息,研究利用轨迹数据提取道路特征有益于基础路网数据的快速建库与更新。道路网由交叉口和连接交叉口的道路线构成,其中交叉口特征识别是整个道路网生成的关键。由于缺乏精细的交叉口识别模型,轨迹数据生成的道路网容易出现路口遗漏、结构失真等现象。针对这一问题,本文提出一种利用轨迹数据提取道路交叉口的方法。首先,分析车辆在交叉口与非交叉口区域移动轨迹几何形态及隐含动力学特征的变化情形;然后,利用决策树方法构建轨迹片段分类模型,并结合移动开窗式的轨迹线剖分模型建立交叉口区域变道轨迹片段提取方法;最后,依据Hausdorff距离对交叉口区域轨迹片段进行聚类,并提取中心线获得完整的道路交叉口结构。采用真实的车辆轨迹线作为测试数据,验证了本文提出方法的有效性。 Crowd sourcing vehicle trajectory data imply the latest road network information.Therefore,studies on the extraction of road features from trajectory data provide the opportunity for efficient construction and renewal of road datasets.Since a road network is composed of road intersections and road segments,the extraction of road intersections plays an important role in road network generation.Due to the lack of accurate mechanisms for intersection extraction,problems such as omission and distortion of road intersections occur frequently.A method is proposed to identify and extract road intersections from vehicle trajectory data.Firstly,it is analyzed that the differences in shape and kinetic features between trajectories from intersection areas and non-intersection areas.Secondly,the decision tree method is employed to construct a trajectory segment classification model,which enables the extraction of lane-changing segments in intersection areas with the support of trajectory division model using a sliding window strategy.Thirdly,a method that based on Hausdorff distance is designed to cluster trajectory segments in intersection areas,and intersection structures are obtained by extracting the central lines of the trajectory segment clusters.Experiments on real-life trajectory datasets were implemented and results showed the effectiveness of the proposed method.
作者 万子健 李连营 杨敏 周校东 WAN Zijian;LI Lianying;YANG Min;ZHOU Xiaodong(School of Resource and Environmental Sciences,Wuhan University,Wuhan 430072,China;State Key Laboratory of Geo-information Engineering,Xi’an 710054,China)
出处 《测绘学报》 EI CSCD 北大核心 2019年第11期1391-1403,共13页 Acta Geodaetica et Cartographica Sinica
基金 国家自然科学基金(41871377) 国家自然科学基金联合基金(U176420021) 国家重点研发计划(2017YFB0503500)~~
关键词 车辆轨迹数据 道路网 交叉口识别 决策树 vehicle trajectory data road network road intersection extraction decision tree
  • 相关文献

参考文献8

二级参考文献118

  • 1马荣华,马晓冬,蒲英霞.从GIS数据库中挖掘空间关联规则研究[J].遥感学报,2005,9(6):733-741. 被引量:24
  • 2王晓明,刘瑜,张晶.地理空间认知综述[J].地理与地理信息科学,2005,21(6):1-10. 被引量:52
  • 3童小华,邓愫愫,史文中.基于概率的地图实体匹配方法[J].测绘学报,2007,36(2):210-217. 被引量:80
  • 4胡云岗,陈军,李志林,赵仁亮,陈艳红.地图数据缩编更新的模式分类与选择[J].地理与地理信息科学,2007,23(4):22-24. 被引量:27
  • 5MACKANESS W, EDWARDS G. The Importance of Modeling Pattern and Structures in Automated Map Generalization[C]//Proceedings of the Joint ISPRS/ICA Workshop on Multi-scale Representations of Spatial Data. Ottawa:[s. n. ], 2002.
  • 6ZHANG Qingnian. Modeling Structure and Patterns in Road Network Generalization [C] // Proceedings of ICA Workshop on Generalization and Multiple Representation. Leicester: [s. n. ], 2004.
  • 7HEINZLE F, ANDERS K H, SESTER M. Graph Based Approaches for Recognition of Patterns and Implicit Information in Road Networks [C]//Proceedings of the 22nd International Cartographic Conference. La Coruna: [s. n. ], 2005.
  • 8HEINZLE F, ANDERS K H. Characterising Space via Pattern Recognition Techniques: Identifying Patterns in Road Networks[C]//Generalisation of Geographic Infor- mation: Cartographic Modelling and Applications. [S. l. ] : Elsevier Ltd, 2007: 233-253.
  • 9YANG Bisheng, LUAN Xuechen, LI Qingquan. An Adaptive Method for Identifying the Spatial Patterns in Road Networks [ J ]. Computers, Environment and Urban Systems, 2010, 34(1): 40-48.
  • 10ROSIN P L. Measuring Rectangularity [J]. Machine Vision and Application, 1999, 11(4): 191-196.

共引文献443

同被引文献119

引证文献16

二级引证文献39

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部