期刊文献+

基于最优选点数的多胞LPV建模及其鲁棒控制研究 被引量:1

Uncertain Polytopic LPV Modelling Based on the Number of Optimal Equilibrium Points and Robust Control
在线阅读 下载PDF
导出
摘要 针对高超声速飞行器飞行包线范围大以及模型参数存在较大不确定性的问题,分别从建模和控制两个方面进行研究。将能够描述模型差异程度的间隙度量理论引入到LPV建模过程中,提出一种新型包线定量划分以及优化选点方法;考虑模型的参数不确定性建立不确定多胞LPV系统,通过求解一组线性矩阵不等式(LMI)得到鲁棒控制增益矩阵。同时,提出了可以保证顶点存在不确定性的闭环LPV系统渐近稳定的充分条件。将上述方法应用于高超声速飞行器建模及速度高度跟踪控制问题上,仿真结果表明:该方法能够降低传统大包线内LPV建模的保守性,实现高超声速飞行器在整个设计包线内精确的指令跟踪,并且在模型参数存在大的不确定性情况下仍保证系统的鲁棒性能和稳定性。 Considering that the wide flight envelope and strong model parameters uncertainties of hypersonic vehicle,this re search work has made progress in both modeling and control.The theory of gap metric which can describe the degree of defference in the model is introduced into the LPV modeling process.The control gain matrix is derived by solving a set of linear matrix inequali ties(LMIs).A sufficient condition is proposed to guarantee the asymptotic stability of the closed-loop LPV systems while the verti ces have parameter uncertainties.Simulation results show that this new method can reduce the conservativeness of traditional LPV controllers.The command tracking and robustness of the LPV control system are in satisfactory performances.The robust perfor mance and stability of the system under strong parameters uncertainties are also guaranteed.
作者 郑亚龙 江驹 徐文萤 ZHENG Yalong;JIANG Ju;XU Wenying(School of Automation,Nanjing University of Aeronautics and Astronautics,Nanjing 210000)
出处 《舰船电子工程》 2019年第11期56-60,83,共6页 Ship Electronic Engineering
基金 国家自然基金项目(编号:61673209)资助
关键词 高超声速飞行器 最优选点数 间隙度量 不确定多胞LPV 鲁棒控制 hypersonic vehicle number of optimal equilibrium points gap metric uncertain polytopic LPV robust control
  • 相关文献

参考文献2

二级参考文献29

  • 1赵廷渝.航空发动机数学模型[J].电子科技大学学报,2005,34(4):545-547. 被引量:2
  • 2Keel L H, Bhattacharyya S E Robust, fragile, or optimal?[J]. IEEE Trans on Automatic Control, 1997, 42(8): 1098-1105.
  • 3Doyle J C, Francis B, Tannenbaum A R. Feedback control theory[M]. New York: Macmillan Publishing Company, 1992.
  • 4Gu D W, Petkov P H ,Konstantinov M M. Robust control design with Matlab[M]. Berlin: Springer-Verlag, 2005.
  • 5Pertti M M. Connunents on robust, raglie, or optimal?[J]. IEEE Trans on Automatic Control, 1998, 43(9): 1265- 1267.
  • 6Zhou K M, Doyle J C, Glover K. Robust and optimal control[M]. London: Prentice-Ha/l, 1996.
  • 7Zames G, E1-Sakkary A K. Unstable systems and feedback: The gap metric[C]. Proc of Allerton Conf on Communication, Control, and Computing. Urbana:University of Illinois at Urbana-Champaign, 1980: 380- 385.
  • 8El-Sakkary A K. The gap metric: Robustness of stabilization of feedback systems[J]. IEEE Trans on Automatic Control, 1985, 30(3): 240-247.
  • 9Vidyasagar M. The graph metric for unstable plants and robustness estimates for feedback stability[J]. IEEE Trans on Automatic Control, 1984, 29(5): 403-417.
  • 10Vinnicombe G. Frequency domain uncertainty and the graph topology[J]. IEEE Trans on Automatic Control, 1993, 38(9): 1371-1383.

共引文献8

同被引文献8

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部