期刊文献+

微积分核心概念教学难点分析及突破 被引量:3

Analysis and breakthrough strategies for teaching difficulties in the core concepts of calculus
在线阅读 下载PDF
导出
摘要 极限、导数(微商)和定积分是微积分的核心概念.指出了微积分核心概念教学需达到的3个理解目标,从极限思想、算式构造和数学符号3方面分析教学难点并给出了相应的教学突破策略,即从辩证法角度澄清极限思想中无限逼近的意义,在归纳整体过程的基础上构造算式,解构名称记号以强化记忆.通过相关教学改革,学生回答问题的积极性和正确率都有明显的提高,相关教学难点问题得到了解决. Limit,derivative(micro quotient)and definite integral are the core concepts of calculus.Points out three understanding goals to be achieved in the teaching of the core concepts of calculus,analyzes the difficulties in teaching from the three aspects of limit thought,formula construction and mathematical symbols,and gives the corresponding teaching breakthrough strategies such as clarifying the significance of infinite approximation in limit thought from the perspective of dialectics,constructing formula on the basis of summarizing the whole process,deconstruction of the name mark to strengthen memory.Through the relevant teaching reform,the students′enthusiasm and accuracy of answering questions have been significantly improved,and the relevant teaching difficulties have been solved.
作者 廖翔 LIAO Xiang(School of Primary Education,Nanning Normal University(Changgu Campus),Nanning 530023,China)
出处 《高师理科学刊》 2019年第11期90-93,共4页 Journal of Science of Teachers'College and University
关键词 微积分 概念教学 教学难点 calculus concept teaching teaching difficulties
  • 相关文献

参考文献6

二级参考文献35

  • 1许钧.论翻译的层次[J].中国翻译,1987(5):12-16. 被引量:20
  • 2何小亚.高中数学新课程微积分的课程设计分析[J].数学通报,2006,45(4):9-13. 被引量:12
  • 3Skemp R.数学学习心理学[M],陈泽民,译.台北:九章出版社,1995.166.
  • 4Hiebert,J.& Carpenter, T.P. Teaching and Learning Mathematic with Understanding. In D.A. Grouws (Ed.) Handbook of Research on Mathematics Teaching and Learning. New York: Macmillan.1992.65-100.
  • 5Anderson,J.R.,& Schunn,C.D. Implication of the ACT-R Learning Theory : No Magic Bullets. In Glaser, R. (Ed.),Advance in Instructional Psycology,Vol.5.Mahwah,NJ:Erlbaum. 2000.1-27.
  • 6Post,T.,& Reys,R.E. Abstraction Generalization and Design of Mathematical Experiences for Children. In K. Fuson & W. Geeslin (Eds.), Models for Mathematics Learning. Columbus, OH: ERIC/SMEAC.1979.117-139.
  • 7Post, T., Behr, M., & Lesh, R. Interpretatio ns of Rational Number Concepts. In L. Silvey & J. Smart (Eds.) Mathematics for Grades 5-9, 1982 NCTM Yearbook. Reston, Virginia: NCTM. 1982.59-72.
  • 8安德森,L.W.学习、教学和评估的分类学[M].皮连生等译.上海:华东师范大学出版社,2008.63.
  • 9Freudenthal,H.作为教育任务的数学[M].陈昌平,唐瑞芬译.上海:上海教育出版社,1995.193,221.
  • 10Skemp,R.R. Relational Understanding and Instrumental Understanding. Mathematics Teaching.1976.77.20-26.

共引文献199

同被引文献5

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部