期刊文献+

边缘智能背景下的手写数字识别 被引量:11

Handwritten numeral recognition under edge intelligence background
在线阅读 下载PDF
导出
摘要 随着边缘智能的快速发展,现有手写数字识别卷积网络模型的发展已越来越不适应边缘部署、算力下降的要求,且存在小样本泛化能力较差和网络训练成本较高等问题。借鉴卷积神经网络(CNN)经典结构、Leaky_ReLU算法、dropout算法和遗传算法及自适应和混合池化思想构建了基于LeNet-DL改进网络的手写数字识别模型,分别在大样本数据集MNIST和小样本真实数据集REAL上与LeNet、LeNet+sigmoid、AlexNet等算法进行对比实验。改进网络的大样本识别精度可达99.34%,性能提升约0.83%;小样本识别精度可达78.89%,性能提升约8.34%。实验结果表明,LeNet-DL网络相较于传统CNN在大样本和小样本数据集上的训练成本更低、性能更优且模型泛化能力更强。 With the rapid development of edge intelligence, the development of existing handwritten numeral recognition convolutional network models has become less and less suitable for the requirements of edge deployment and computing power declining, and there are problems such as poor generalization ability of small samples and high network training costs. Drawing on the classic structure of Convolutional Neural Network(CNN), Leaky_ReLU algorithm, dropout algorithm, genetic algorithm and adaptive and mixed pooling ideas, a handwritten numeral recognition model based on LeNet-DL improved convolutional neural network was constructed. The proposed model was compared on large sample MNIST dataset and small sample REAL dataset with LeNet, LeNet+sigmoid, AlexNet and other algorithms. The improved network has the large sample identification accuracy up to 99.34%, with the performance improvement of about 0.83%, and the small sample recognition accuracy up to 78.89%, with the performance improvement of about 8.34%. The experimental results show that compared with traditional CNN, LeNet-DL network has lower training cost, better performance and stronger model generalization ability on large sample and small sample datasets.
作者 王建仁 马鑫 段刚龙 薛宏全 WANG Jianren;MA Xin;DUAN Ganglong;XUE Hongquan(College of Economics and Management,Xi'an University of Technology,Xi'an Shaanxi 710054,China)
出处 《计算机应用》 CSCD 北大核心 2019年第12期3548-3555,共8页 journal of Computer Applications
基金 陕西省重点学科资助项目(107-00X901)~~
关键词 边缘智能 卷积网络 手写数字识别 Leaky_ReLU 混合池化 自适应 DROPOUT 遗传算法 edge intelligence Convolutional Neural Network(CNN) handwritten numeral recognition Leaky_ReLU mixing pooling adaptive dropout genetic algorithm
  • 相关文献

参考文献12

二级参考文献70

  • 1张进猛,张进秋.基于OpenCV的图像采集和处理[J].软件导刊,2010(1):164-165. 被引量:14
  • 2赵万鹏,古乐野.基于Adaboost的手写体数字识别[J].计算机应用,2005,25(10):2413-2414. 被引量:9
  • 3潘石柱,殳伟群,王令群.基于Adaboost的汽车牌照快速定位[J].计算机工程,2006,32(12):187-188. 被引量:9
  • 4VIOLA P, JONES M. Robust real-time face detection[J]. International Journal of Computer Vision, 2004, 57(2) : 137 -154.
  • 5PAUL B, ATHITHAN G, MURTY M N. Speeding up AdaBoost classifier with random projection[ C] // 7th International Conference on Advances in Pattern Recognition. Washington, DC: IEEE Computer Society, 2009:251 -254.
  • 6VALIANT L G. A theory of the learnable[J]. Communication of the ACM, 1984, 27 (11): 1134-1142.
  • 7SCHAPIRE R E. The strength of weak learnability[ C]//30th Annual Symposium on Foundations of Computer Science. Washington, DC: IEEE Computer Society, 1989:28 -33.
  • 8FREUND Y, SCHAPIRE R E. A decision theoretic generalization of online learning and an application to boosting[J]. Journal of Computer and System Sciences, 1997, 55 (1) : 119 - 139.
  • 9WU JIAN XIN, BRUBAKER S C, MULLIN D M, et al. Fast asymmetric learning for cascade face detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2008, 30(3): 369-382.
  • 10吴一全,吴文怡,潘喆.二维最大类间方差阈值分割的快速迭代算法[J].中国体视学与图像分析,2007,12(3):216-220. 被引量:34

共引文献638

同被引文献92

引证文献11

二级引证文献64

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部