期刊文献+

稳健高效通用SAR图像稀疏特征增强算法 被引量:15

Robust and Efficient Sparse-feature Enhancement for Generalized SAR Imagery
在线阅读 下载PDF
导出
摘要 针对合成孔径雷达(SAR)成像中的稀疏特征增强问题,传统方法难以在精度与效率之间实现有效的平衡。该文提出基于复数交替方向多乘子方法(C-ADMM),针对SAR稀疏特征增强建立增广的拉格朗日优化方程,并引入复数范数邻近算子,基于高斯-赛德尔思想进行对偶迭代运算,从而在复数回波数据域内对多种SAR模式的实测数据进行成像。实验部分首先通过仿真数据的相变图(PTD)验证C-ADMM算法对于复数数据的稀疏恢复性能,然后选取地面静止场景和地面运动目标的原始SAR图像和逆SAR图像实测数据,与凸优化(CVX)方法和贝叶斯压缩感知(BCS)方法进行对比试验,最后验证了该文所提算法在稀疏特征增强应用中的稳健性、高效性和通用性。 For the problem of sparse feature enhancement in Synthetic Aperture Radar(SAR)imagery,conventional methods are difficult to achieve a preferable balance between accuracy and efficiency.In this paper,a robust and efficient SAR imaging algorithm based on Complex Alternating Direction Method of Multipliers(C-ADMM)is proposed for general SAR imaging feature enhancement within complex raw data domain.The problem is firstly imposed by an augmented Lagrange function,and the complex ?1-norm of the intended SAR image is jointly formulated within the C-ADMM framework.Then,the proximal mapping of the sparse feature is derived as a soft-thresholding operator.Further,an iterative processing procedure is designed according to Gaussian-Deidel principle,and the convergence of the proposed algorithm is analyzed.In the experiment,the performance of the proposed algorithm is firstly examined by the simulated data in terms of Phase Transition Diagram(PTD)under different under-sampling rate and degree of sparsity.Then,various raw SAR and Inverse SAR(ISAR)data,for both stationary ground scene and Ground Moving Target Imaging(CMTIm),are applied to further verifying the proposed C-ADMM,and comparisons with classical Convex(CVX)and Bayesian Compress Sensing(BCS)algorithms are performed,so that both the effectiveness and superiority of the C-ADMM algorithm can be verified.
作者 杨磊 李埔丞 李慧娟 方澄 YANG Lei;LI Pucheng;LI Huijuan;FANG Cheng(Tianjin Key Laboratory for Advanced Signal Processing,Civil Aviation University of China,Tianjin 300300,China)
出处 《电子与信息学报》 EI CSCD 北大核心 2019年第12期2826-2835,共10页 Journal of Electronics & Information Technology
基金 国家自然科学基金(61601470) 天津市自然科学基金(16JCYBJC41200) 中央高校基本科研业务费专项资金(3122018C005)~~
关键词 合成孔径雷达 稀疏特征增强 复数交替方向多乘子方法 增广拉格朗日优化方程 Synthetic Aperture Radar(SAR) Sparse feature enhancement Complex Alternating Direction Method of Multipliers(C-ADMM) Augmented Lagrangian function
  • 相关文献

参考文献5

二级参考文献86

  • 1马超,顾红,苏卫民,李传中,陈金立.多输入多输出阵列的机载前视雷达成像算法[J].电波科学学报,2015,30(1):21-28. 被引量:5
  • 2郑明洁,杨汝良.一种改进的DPCA运动目标检测方法[J].电子学报,2004,32(9):1429-1432. 被引量:27
  • 3李家强,金荣洪,耿军平,范瑜,毛炜.基于高斯短时分数阶傅里叶变换的多分量LFM信号检测与参数估计[J].电子与信息学报,2007,29(3):570-573. 被引量:26
  • 4Coe D J and White R G. Moving target detection in SAR imagery: Experimental results. Proceeding of IEEE Radar Conf, British: 644-649.
  • 5Marivi Tello and Carlos Lopez-Martinez. A novel algorithm for ship detection in SAR .imagery based on the wavelet transform. IEEE Geosicence and Remote Sensing Letters, 2005, 22(2): 201-205.
  • 6Oliver C and Quegan S. Understanding Synthetic Aperture Radar Images, Artech House, Boston, London, 1998: 123-157.
  • 7Tello M, Lopez-Martinez C, Mallorqui J, and Aguasca A. Use of the multiresolution capability of wavelets for ship detection in SAR imagery, Proc. IGARSS, Alaska, USA, 2004 (6): 4247-4250.
  • 8Mallat S. A Wavelet Tour of Signal Processing. San Diego, CA: Academic Press, 1998: 130-180.
  • 9Mallat S. A theory for multiresolution signal decomposition: The wavelet representation. IEEE Trans. on Pattern Analysis and Machine Intelligence, 1989, 11(7): 674-693.
  • 10Bi G A,Li X M,and Samson S C M.LFM signal detection using LPP-Hough transform[J].Signal Processing,2011,91(6):1432-1443.

共引文献22

同被引文献75

引证文献15

二级引证文献63

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部