摘要
令λ(n)是刘维尔函数.考虑β是变量的情况,并推广Sankaranarayanan和Sun的结果,用Vaughan恒等式和Perron公式证明非线性指数和的一个非平凡上界.
Let λ(n) be the Liouville function. The main purpose of this paper is to consider the case that β is variable and generalize the results in Sankaranarayanan and Sun, the main techniques we used is Vaughan′s identity and Perron′s formula, so we will prove a nontrivial upper bound for the nonlinear exponential sum.
作者
黄敬
阎晓斐
张德瑜
Huang Jing;Yan Xiaofei;Zhang Deyu(School of Mathematics and Statistics,Shandong Normal University,Ji′nan 250014,China)
出处
《纯粹数学与应用数学》
2019年第4期379-393,共15页
Pure and Applied Mathematics
基金
国家自然科学基金(11771256)