期刊文献+

关于Liouville函函数的非线性指数和(英文)

On the nonlinear exponential sums involving the Liouville function
在线阅读 下载PDF
导出
摘要 令λ(n)是刘维尔函数.考虑β是变量的情况,并推广Sankaranarayanan和Sun的结果,用Vaughan恒等式和Perron公式证明非线性指数和的一个非平凡上界. Let λ(n) be the Liouville function. The main purpose of this paper is to consider the case that β is variable and generalize the results in Sankaranarayanan and Sun, the main techniques we used is Vaughan′s identity and Perron′s formula, so we will prove a nontrivial upper bound for the nonlinear exponential sum.
作者 黄敬 阎晓斐 张德瑜 Huang Jing;Yan Xiaofei;Zhang Deyu(School of Mathematics and Statistics,Shandong Normal University,Ji′nan 250014,China)
出处 《纯粹数学与应用数学》 2019年第4期379-393,共15页 Pure and Applied Mathematics
基金 国家自然科学基金(11771256)
关键词 非线性指数和 Liouville函数 Vaughan恒等式 nonlinear exponential sums Liouville function Vaughan′s identity
  • 相关文献

参考文献4

二级参考文献20

  • 1REN XiuMin1,& YE YangBo1,2 1School of Mathematics,Shandong University,Jinan 250100,China,2Department of Mathematics,The University of Iowa,Iowa City,Iowa 52242-1419,USA.Resonance between automorphic forms and exponential functions[J].Science China Mathematics,2010,53(9):2463-2472. 被引量:9
  • 2Jianya Liu,Yonghui Wang,Yangbo Ye.A proof of Selberg’s orthogonality for automorphic L-functions[J]. manuscripta mathematica . 2005 (2)
  • 3Stephen D. Miller,Wilfried Schmid.The Highly Oscillatory Behavior of Automorphic Distributions for SL(2)[J]. Letters in Mathematical Physics . 2004 (1)
  • 4Jianya Liu,Yangbo Ye.Subconvexity for Rankin-Selberg L-Functions of Maass Forms[J]. Geometrical and Functional Analysis GAFA . 2002 (6)
  • 5Henryk Iwaniec,Wenzhi Luo,Peter Sarnak.Low lying zeros of families of L-functions[J]. Publications Mathématiques de l’Institut des Hautes Scientifiques . 2000 (1)
  • 6James Lee Hafner.Some remarks on odd maass wave forms (and a correction to )[J]. Mathematische Zeitschrift . 1987 (1)
  • 7Hua L G.Introduction to Number Theory (with an appendix by Yuan Wang). . 1975
  • 8Kim H,Sarnak P.Appendix 2: Rened estimates towards the Ramanujan and Selberg conjectures. Journal of the American Mathematical Society . 2003
  • 9Sun Q F.On cusp form coefficients in nonlinear exponential sums. The Quarterly Journal of MaThematics Oxford .
  • 10Wu J,Ye Y B.Hypothesis H and the prime number theorem for automorphic representations. Functiones et Approx-imatio Commentarii Mathematici . 2007

共引文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部