期刊文献+

浅水波方程的一类改进的格子Boltzmann模型 被引量:1

A modified lattice Boltzmann model for shallow water flows
在线阅读 下载PDF
导出
摘要 提出了一种改进的格子Boltzmann模型来模拟浅水流动.新模型通过在演化方程中添加修正项,一个可调参数被引入到黏性系数与无量纲松弛时间的关系中,从而使得无量纲松弛时间的值在黏性系数固定时是可调的.为了验证模型的精确性与稳定性,对圆柱绕流、流量驱动无外力浅水流进行了模拟.数值结果表明,相较于以往模型,新提出模型在提高精度的同时,计算效率和稳定性也得到了改善. A modified lattice Boltzmann model is proposed to simulate shallow water flows.The new model introduces an adjustable parameter in the relationship between the viscosity coefficient and the dimensionless relaxation time by adding a correction term to the evolution equation,so that the dimensionless relaxation time is adjustable when the viscosity coefficient is fixed.In order to verify the accuracy and stability of the model,the flow around the cylinder and the discharge-driven shallow water flow without external force is simulated.The numerical results show that compared with the previous approaches,the proposed model is improved not only in accuracy,but also in computational efficiency and stability.
作者 陈文文 张文欢 汪一航 朱俏俐 CHEN Wenwen;ZHANG Wenhuan;WANG Yihang;ZHU Qiaoli(School of Mathematics and Statistics,Ningbo University,Ningbo 315211,China;Ningbo Collaborative Innovation Center of Nonlinear Hazard System of Ocean and Atmosphere,Ningbo 315211,China)
出处 《宁波大学学报(理工版)》 CAS 2020年第1期72-79,共8页 Journal of Ningbo University:Natural Science and Engineering Edition
基金 宁波市自然科学基金(2016A610075)
关键词 格子BOLTZMANN方法 浅水波方程 无量纲松弛时间 稳定性 边界条件 lattice Boltzmann model shallow water equations dimensionless relaxation time stability boundary conditions(
  • 相关文献

参考文献2

二级参考文献11

  • 1[1]Champman S, Cowling T G. The Mathematical Theory of Non-Uniform. Camberidge University Press 1970.
  • 2[2]Bird G A. Molecular Gas Dynamics and the Direct Simulation of Gas Flows. Oxford: Clarendon Press, 1994.
  • 3[3]Wolfram S. Cellular automaton fluidl: basic theory. J. Stat. Phys. , 1986,45:471-526.
  • 4[4]McNamara G, Alder B. Analysis of the Lattice Boltzmann Treatment of Hydronamics. Physica, 1993, A194:218-228.
  • 5[5]Alexander F J, Chen S, Sterling D. Lattice Boltzmann thermohydro dynamics. Phys. Rev., 1993,47:2249-2252.
  • 6[6]Holton J R. An Introduction to Dynamic Meteorology. New York: Academic Press, 1972.
  • 7[7]Bhatnagar P L, Gross E P, Krook M. A model for collision processes in Gases. Phys. Rev. , 1954,94:511-526.
  • 8[8]Feng S D,Tsutahara M. Some progresses in the lattice Boltzmann model. Chinese Physics, 2001,10(7):587-593.
  • 9[9]Tsutahara M, Feng S D, Kataoka T. Simulation of the stratified flows using the two-component lattice Boltzmann method. Comput. Phys. Commun . ,2000,129:131-137.
  • 10[10]Rothman D H, Zaleskl S. Lattice-Gas Cellar Automata. Camberidge University Press 1996.

共引文献6

同被引文献7

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部