期刊文献+

自适应多普勒补偿与变异选择的蝙蝠算法 被引量:8

Self-Adaptive Doppler Compensation and Mutation Choice of Bat Algorithm
在线阅读 下载PDF
导出
摘要 为克服蝙蝠算法在高维优化问题上求解精度低和早熟收敛的缺点,提出一种改进的蝙蝠算法。首先根据蝙蝠相对猎物距离的远近程度,对频率引入自适应多普勒补偿策略,并结合速度偏移机制修正飞行方向,产生靠近最优个体的新位置;其次对最优个体构造自适应变异选择策略,先利用柯西变异产生的较大步长摆脱局部极值的束缚,后利用高斯变异产生的较小步长精细搜寻最优区域;最后通过调整响度和脉冲发射率,平衡算法的全局探索和局部开发能力。从理论上分析了算法的收敛性和运算复杂性,对12个标准函数在不同维度下进行仿真实验,并与近年来其他蝙蝠算法进行比较,结果表明改进的算法在求解高维优化问题上具有较优的收敛速度和精度。 This paper presents an improved bat algorithm(Doppler and mutant bat algorithm, DMBA) to overcome the problems of high dimensional optimization with low precision and premature convergence. A self-adaptive compensation for the Doppler effect of frequency is introduced according to the relative distance between the bat and the prey, and the flight direction is modified by combining the velocity offset mechanism to generate a new position close to the prey. Then, self-adaptive mutation choice strategies are constructed for the best individual. The larger step size generated by Cauchy mutation is used to get rid of the constraint of local extreme value, and then the smaller step size generated by Gaussian mutation is used to search the optimal region. Finally, the global exploration and local exploitation ability are balanced by adjusting loudness and pulse emission. The convergence and computational complexity of the algorithm are analyzed theoretically. 12 classical benchmark functions are simulated in different dimensions and the proposed algorithm is compared with other recent bat algorithms. The experimental results show that the proposed algorithm has better convergence speed and precision for solving high dimensional optimization problems.
作者 王永贵 张博雅 吕欢欢 WANG Yonggui;ZHANG Boya;LV Huanhuan(School of Software,Liaoning Technical University,Huludao,Liaoning 125105,China)
出处 《计算机科学与探索》 CSCD 北大核心 2020年第1期125-139,共15页 Journal of Frontiers of Computer Science and Technology
基金 国家自然科学基金No.61772249 辽宁省自然科学基金指导计划No.20180550450~~
关键词 蝙蝠算法 多普勒补偿 速度偏移 变异选择 bat algorithm Doppler compensation velocity shift mutation choice
  • 相关文献

参考文献6

二级参考文献46

  • 1崔建双,李铁克,张文新.混合流水车间调度模型及其遗传算法[J].北京科技大学学报,2005,27(5):623-626. 被引量:29
  • 2高尚,汤可宗,蒋新姿,杨静宇.粒子群优化算法收敛性分析[J].科学技术与工程,2006,6(12):1625-1627. 被引量:19
  • 3潘全科,王文宏,朱剑英,赵保华.基于粒子群优化和变邻域搜索的混合调度算法[J].计算机集成制造系统,2007,13(2):323-328. 被引量:43
  • 4Yang X S. A new metaheuristic bat-inspired algorithm [J]. in: Nature Inspired Cooperative Strate- gies for Optimization (NICSO 2010)(Eds J R Gonzalez et al.), SCI 284, 2010: 65-74.
  • 5YANG X S. Bat algorithm for multi-objective optimization[J]. Int J Bio-Inspired Computation, 2011, 3(5): 267-274.
  • 6Yang X S, Gandomi A H. Bat algorithm: a novel approach for global engineering optimization[J]. Engineering Computation, 2012, 29(5): 267-289.
  • 7Gandomi A H, Yang X S, Alavi A H, et al. Bat algorithm for constrained optimization tasks [J]. Neural Comput & Applic. DOI: 10.1007/s00521-012-1028-9.
  • 8Holland J H. Adaptation in Natural and Artificial Systems. Cam- bridge, USA: MIT Presst 1992.
  • 9Kennedy J, Eberhart R. Particle Swarm Optimization//Pmc of the IEEE International Conference on Neural Networks. Perth, Australia, 1995, IV: 1942-1948.
  • 10Yang Xinshe. Nature-lnspired Metaheuristic Algorithms. Frome, UK: Luniver Press, 2011.

共引文献191

同被引文献104

引证文献8

二级引证文献202

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部