摘要
估计人员或目标位置已成为多个应用的基础。现存的针对室内的场景(如体育监测)的定位算法仍存在一些挑战。而超宽带(Ultra Wide Band,UWB)信号能够精确地估计穿越时间(Time of Flight,T0F),提高了测距精度。为此,提出最优锚节点集的三边测量(Best-Anchor Selection basedTrilateration,BAST)算法。BAST算法利用UWB信号的T0 F测距。并依据移动节点的预测位置,BAST算法选择最优的三个锚节点。同时,估计噪声,降低测距误差。并利用安装了UWB芯片的穿戴节点Zyggie进行实验,仿真结果表明,提出的BAST算法在室内移动环境,能够获取0.06 m的平均定位误差。
Positioning a person or an object has become essential in many applications.But indoor positioning still remains a great challenge for applications like sport monitoring.Ultra-Wide Band(UWB)allows accurate time of flight(TOF)measurements,and thus distances estimations between nodes equipped with.A Best-Anchor Selection based Trilateration(BAST)is proposed in this paper.BAST estimated distances between mobile node and anchors.It aims at selecting a triplet of anchors taking into account predicted coordinates for mobile*s position.And the noise is estimated to improve measured distances.Then a wearable light Zyggie including an UWB chipset has been developed for algorithms comparison.Simulation results show that average error of the proposed BAST is 0.06 m for indoor application.
作者
石磊
刘燕
SHI Lei;LIU Yan(College of computer Science Chengdu Normal University,Chengdu 611130,China)
出处
《中国电子科学研究院学报》
北大核心
2019年第11期1159-1163,共5页
Journal of China Academy of Electronics and Information Technology