期刊文献+

基于复频域纹理特征的植物叶片识别算法 被引量:5

Research of leaf recognition algorithm based on complex frequency domain texture features
在线阅读 下载PDF
导出
摘要 针对空间域特征不能全面准确地描述叶片的问题,提出了一种基于复频域纹理特征(Complex frequency domain texture features,CFDTF)的叶片识别算法。首先,对叶片图像进行预处理。其次,对预处理后的图像进行分块,并对每一个图像块进行双树复小波变换(Dual-tree complex wavelet transform,DTCWT),分别计算复频域局部二值模式(Local binary pattern,LBP)和局部相位量化(Local phase quantization,LPQ)特征,得到图像块的特征。接着,串联所有图像块的特征得到整个图像的特征。最后,在Flavia数据库上通过KNN分类器分类识别。结果表明,与传统的颜色、形状、纹理等特征相比,该算法平均识别精度明显提高,达到95.75%。 In the most time,the traditional spatial domain feature cannot describe a leaf completely and accurately.In this study,an algorithm of leaf recognition based on complex frequency domain texture features(CFDTF)was proposed.Firstly,the image of leaf should be preprocessed.Secondly,the preprocessed image could be divided into many blocks,and every image block was processed by the dual-tree complex wavelet transform(DTCWT).Next,the local binary pattern(LBP)and local phase quantization(LPQ)features of image blocks were calculated respectively,and the features of image blocks were obtained.Thirdly,all block features were concatenated to obtain the feature of an entire image.Finally,KNN classifier was used for classification and recongnition in the Flavia dataset.Compared with the traditional color,shape,texture and other features,the average recognition accuracy of our algorithm was significantly improved,reaching 95.75%.
作者 梅星宇 李新华 鲍文霞 张东彦 梁栋 MEI Xing-yu;LI Xin-hua;BAO Wen-xia;ZHANG Dong-yan;LIANG Dong(National Engineering Research Center for Agro-Ecological Big Data Analysis and Application,Anhui University,Hefei 230601,China)
出处 《江苏农业学报》 CSCD 北大核心 2019年第6期1334-1339,共6页 Jiangsu Journal of Agricultural Sciences
基金 国家自然科学基金项目(41771463、61672032)
关键词 植物叶片识别 复频域纹理特征 双树复小波变换 plant leaf recognition complex frequency domain texture features dual-tree complex wavelet transform
  • 相关文献

参考文献7

二级参考文献82

  • 1张民侠,张运生,郑怀兵,唐静.手持GPS和罗盘仪在涉案林地面积测量中的精度分析[J].中南林业调查规划,2009,28(1):61-64. 被引量:14
  • 2王晓峰,黄德双,杜吉祥,张国军.叶片图像特征提取与识别技术的研究[J].计算机工程与应用,2006,42(3):190-193. 被引量:114
  • 3张敏,张恒义,郑筱祥.基于轮廓曲率和谱系聚类的大鼠体态自动识别[J].浙江大学学报(工学版),2006,40(3):524-527. 被引量:11
  • 4薛磊,杨晓敏,吴炜,陈默,何小海.一种基于KNN与改进SVM的车牌字符识别算法[J].四川大学学报(自然科学版),2006,43(5):1031-1036. 被引量:21
  • 5GB1103-2007,棉花细绒棉[S].
  • 6杜吉祥,翟传敏.基于Gabor纹理特征的植物图像识别方法[C]//第十四届全国图像图形学学术会议论文集.北京:中国图象图形学学会,2008:246-250.
  • 7Castellano G, Castiello C, Fanelli A M. Content-based image retrieval by shape matching [C]. Quebee, Canada: Fuzzy In formation Processing Society, Annual Meeting of the North American, 2006: 114-119.
  • 8Du J X, Wang X F, Zhang G J. Leaf shape based plant species recognition [J]. Applied Mathematics and Computation, 2007, 185 (2): 883-893.
  • 9Hiremath P S, Pujari J. Content based image retrieval using color, texture and shape features [C]. Guwahati, India: International Conference on Advanced Computing and Communications, 2007: 780-784.
  • 10Kebapci H, Yanikoglu B, Unal G. Plant image retrieval using color and texture features [ C ]. Ankara, Turkey: International Symposium on Computer and Information Sciences, 2009: 82-87.

共引文献251

同被引文献25

引证文献5

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部