期刊文献+

镁铝钆合金在空气中的氧化与燃烧 被引量:3

Oxidation and Combustion of Mg-Al-Gd Alloy in Air
原文传递
导出
摘要 研究了在镁铝质量比为20:80的镁铝合金中加入稀土金属钆后,合金在空气中的氧化与燃烧特性。借助TG-DSC,SEM,XRD,EDS以及高速摄像仪等仪器对Mg-Al-Gd合金的氧化、燃烧过程及产物进行分析。结果表明:相对于不含钆的Mg-Al合金,Mg-Al-Gd合金在空气中的点火温度较低,约为487.6℃。在TG-DSC实验中,镁铝钆合金的氧化分为2个阶段,第1个阶段为镁的氧化反应,第2个阶段为氧化镁、铝以及氧气的反应,反应生成MgAl2O4。当Mg-Al-Gd合金在空气中燃烧时,合金粒子表面会形成一层薄的致密的氧化层,氧化层限制了合金粒子固相或液相的氧化,促进其气相燃烧,同时也导致燃烧出现喷射现象。燃烧没有生成MgAl2O4,而是形成了一种新的产物AlN。 The oxidation and combustion characteristics of Mg-Al-Gd alloy with the 2:8 mass ration of Mg:Al were studied. The oxidation and combustion process as well as the reacted and unreacted particles of the alloy were analyzed by TG-DSC, SEM, XRD, EDS and high-speed camera. The results show that the ignition temperature of Mg-Al-Gd alloy in air is about 487.6 °C, which is lower than that of Mg-Al alloy. The oxidation of the Mg-Al-Gd alloy in TG-DSC experiments is a staged process: the first stage is the oxidation of Mg and the second stage is the formation of MgAl2 O4. When burning in air, a thin compact oxide layer will be formed firstly on the particle surface. This layer can hinder the oxidation of the solid or liquid phase and promote the gas phase combustion of the alloy. The combustion products of the Mg-Al-Gd alloy in air mainly contain MgO and AlN, and MgAl2 O4 is not detected in the products.
作者 谢晓 隋颖 黄晓昱 朱晨光 Xie Xiao;Sui Ying;Huang Xiaoyu;Zhu Chenguang(Nanjing University of Science and Technology,Nanjing 210094,China)
机构地区 南京理工大学
出处 《稀有金属材料与工程》 SCIE EI CAS CSCD 北大核心 2019年第12期3924-3929,共6页 Rare Metal Materials and Engineering
基金 国家自然科学基金(51676100)
关键词 镁铝合金 燃烧 ALN Gd Mg-Al alloy combustion AlN
  • 相关文献

参考文献2

二级参考文献19

  • 1陈兢.新概念武器——超空泡水下高速武器[J].飞航导弹,2004(10):34-37. 被引量:24
  • 2邹美帅,杨荣杰,郭晓燕,曹传宝,李建民.Al/H_2O推进剂的研究进展[J].含能材料,2007,15(4):421-424. 被引量:10
  • 3Timothy F Miller, Jeremy L Walter, Daniel H Kiely. A Next-Generation AUV Energy System Based on Alumi- num-Seawater Combustion [ R ]. IEEE, 2002:111-119.
  • 4Foley T J, Johnson C E, Higa K T. Inhibition of Oxide Formation on Aluminum Nanoparticles by Transition Metal Coating [J]. Chemistry of Materials, 2005, 17 (16) :4086-4091.
  • 5Armstrong R W, Baschung B, Booth D W, et al. En- hanced Propellant Combustion with Nanoparticles [J]. Nano Letters, 2003, 3(2): 253-255.
  • 6Yuriy L Shoshin, Ruslan S Mudryy, Edward L Dreizin. Preparation and Characterization of Energetic A1-Mg Mechanical Alloy Powders [J]. Combustion and Flame, 2002, 128(3): 259-269.
  • 7Yasmine Aly, Mirko Schoenitz, Edward L Dreizin. Igni- tion and Combustion of Mechanically Alloyed A1-Mg Powders with Customized Particle Sizes [J]. Combustion and Flame, 2013, 160(4): 835-842.
  • 8Edward L Dreizin, Yuriy L Shoshin, Ruslan S Mudeyy. Constant Pressure Flames of Aluminum and Aluminum- Magnesium Mechanical Alloy Aerosols in Microgravity [J]. Combustion and Flame, 2002, 130(4): 381-285.
  • 9Shasha Zhang, Edward L Dreizin. Reaction Interface for Heterogeneous Oxidation of Aluminum Powders [J]. The Journal of Physical Chemistry C, 2013, 117 (27): 14025-14031.
  • 10H T Huang, M S Zou, X Y Guo, et al. Analysis of the Aluminum Reaction Efficiency in a Hydro-Reactive Fu- el Propellant Used for a Water Ramjet [J]. Combustion, Explosion and Shock Waves, 2013, 49 ( 5 ) : 541-547.

共引文献9

同被引文献25

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部