期刊文献+

蚁群优化算法优化支持向量机的视频分类 被引量:1

Video classification based on support vector machine optimized by ant colony optimization
在线阅读 下载PDF
导出
摘要 针对当前支持向量机支持优化的参数无法获得高精度的体育视频分类结果的难题,为了提高体育视频分类正确率,提出基于蚁群优化算法优化支持向量机的体育视频分类方法。首先采集体育视频,并提取体育视频分类的多个特征;然后采用主成分分析算法对体育视频分类特征进行处理,作为支持向量机的输入,体育视频类别作为支持向量机的输出,建立体育视频分类模型,并采用蚁群优化算法对支持向量机进行优化;最后采用多个体育视频数据进行分类仿真实验,结果表明,蚁群优化算法优化支持向量机的体育视频分类正确率高于90%,降低了体育视频分类错误,体育视频分类效果明显优于当前其他类型的体育视频分类方法,而且体育视频分类效率得到有效的改善。 In order to solve the problem that the current support vector machine(SVM)can′t support optimized parameters to obtain high⁃precision sports video classification results,the sports video classification method based SVM optimized by ant colony optimization(ACO)is proposed to improve the accuracy of sports video classification.The sports videos are collected and several features of sports video classification are extracted firstly,and then the classification features of sports video are processed by means of principal component analysis algorithm.The sports video classification features are taken as the input of SVM and the sports video category as the output of SVM to establish a sports video classification model.The SVM is optimized by ACO.A classification simulation experiment is conducted with multiple sports video data.The simulation experiment results show that the classification accuracy of the sports video classification based on SVM optimized by ACO is higher than 90%,and the classification error of sports video classification is reduced.The classification effect of sports videos is obviously better than that of other current sports video classification methods,and the classification efficiency of sports videos is effectively improved.
作者 王杨 刘蒙 闫伟光 WANG Yang;LIU Meng;YAN Weiguang(Zhangjiakou Vocational and Technical College,Zhangjiakou 075000,China)
机构地区 张家口学院
出处 《现代电子技术》 北大核心 2020年第1期56-58,62,共4页 Modern Electronics Technique
关键词 体育视频 分类方法 蚁群优化算法 主成分分析 特征提取 支持向量机优化 sports video classification method ACO principal component analysis feature extraction SVM optimization
  • 相关文献

参考文献15

二级参考文献110

  • 1宋枫溪,高林.文本分类器性能评估指标[J].计算机工程,2004,30(13):107-109. 被引量:33
  • 2张龙飞,曹元大,周艺华.基于对象跟踪的视频分割[J].四川大学学报(自然科学版),2005,42(2):420-423. 被引量:1
  • 3张龙飞,曹元大,周艺华,李剑.基于支持向量机元分类器的体育视频分类[J].北京理工大学学报,2006,26(1):41-44. 被引量:11
  • 4Snoek C G M, Worring M. Multimodal video indexing: a review of the state-of-the-art [J]. Multimedia Tools and Applications, 2005, 25 (1) : 5 - 35.
  • 5Lin W H, Hauptmann. News video classification using svm-based multimodal classifiers and combination strategies[C]// ACM Multimedia 2002. Juan-les-Pins, France:ACM, 2002: 323-326.
  • 6Zhou W S, Vellaikal A, Kuo C J. Rule-based video classification system for basketball video indexing [C]//ACM Multimedia Workshops. [S. l.]: ACM, 2000: 213-216.
  • 7Ekin A, Tekalp A M. Automatic soccer video analysis and summarization[J ]. IEEE Transactions on Image Processing, 2003,12(7):796 - 807.
  • 8Yu X G, Tian Q, Kong W W. A novel ball detection framework for real soccer video [C]//ICME 2003 ( Ⅱ ).Baltimore, Washington DC: The Computer Society,2003: 265-268.
  • 9张龙飞 张明杰 曹元大.足球比赛视频的场地及运动员分割[C]..第一届全国内容安全与信息检索学术会议(NCIRCS-2004)[C].上海:复旦大学出版社,2004.286-292.
  • 10Itti L, Koch C. Computational modeling of visual attention[J]. Nature Reviews Neuroscience, 2001,2(3): 194-203.

共引文献60

同被引文献12

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部