期刊文献+

基于统计特征的D邻域滑动窗路面裂缝分割法 被引量:4

Segmentation Algorithm for Pavement Cracks Based on Statistical Characteristics of D Neighborhood Sliding Windows
在线阅读 下载PDF
导出
摘要 计算机图像分析技术被广泛应用于路面裂缝病害检测,并逐步成为热点之一,然而路面裂缝自动检测技术还未能良好地适应目前复杂的路面状况。针对非均匀背景中传统分割算法的高复杂性及低准确度,提出一种基于统计特征的路面裂缝自适应阈值分割算法。上述方法首先对图像灰度化处理,再利用灰度分布的统计特征结合D邻域滑动窗对像素点依次判别,最后对其结果形态学滤波完成精确的裂缝分割。实验结果表明,与传统边缘检测方法相比,上述方法环境适应能力强,边缘信息保留完整,对不同类型裂缝计算效率高且分割更准确。 Technology of image analysis is widely used in pavement crack detection,and become one of the hot spots gradually.However,the technology of pavement cracks automatic detection has not been adapted to the complex pavement conditions.In view of the high complexity and low accuracy of the traditional segmentation algorithm in non-uniform background,an adaptive threshold segmentation algorithm for pavement cracks based on statistical characteristics is proposed.This method first discriminates the image gray level,and then uses the statistical features of the gray distribution to distinguish the pixels in sequence with the D neighborhood sliding window,and finally the accurate segmentation of cracks is achieved by morphological filtering.The experimental results show that,compared with the traditional edge detection method,this method has the advantages of strong adaptability,complete edge information,high efficiency and more accurate segmentation for different types of cracks.
作者 李鹏 蒋威 顾彬彬 LI Peng;JIANG Wei;GU Bin-bin(Jiangsu Key Laboratory of Meteorological Observation and Information Processing,Nanjing University of Information Science and Technology,Nanjing Jiangsu 210044,China;Jiangsu Meteorological Sensor Network Technology Environment Center,Nanjing University of Information Science and Technology,Nanjing Jiangsu 210044,China;Jiangsu Collaborative Innovation Center on Atmospheric Environment and Equipment Technology,Nanjing University of Information Science and Technology,Nanjing Jiangsu 210044,China)
出处 《计算机仿真》 北大核心 2019年第12期117-121,共5页 Computer Simulation
基金 国家自然科学基金资助项目(41075115) 江苏省第11批六大高峰人才项目(2014-XXRJ-006) 江苏省重点研发计划社会发展项目(BE201569) 江苏省高校优势学科Ⅱ期建设工程项目
关键词 图像处理 裂缝分割 统计特征 滑动窗 Image processing Crack segmentation Statistical characteristics Sliding window
  • 相关文献

参考文献7

二级参考文献64

  • 1高建贞,陆建峰,赵春霞,唐振民,杨静宇.基于多级拟合的道路病害自动检测与识别[J].计算机工程与应用,2004,40(22):220-223. 被引量:5
  • 2张洪光,王祁,魏玮.基于人工种群的路面裂纹检测[J].南京理工大学学报,2005,29(4):389-393. 被引量:10
  • 3王刚,贺安之,肖亮.基于高速公路裂纹局部线性特征内容的脊波变换域算法研究[J].光学学报,2006,26(3):341-346. 被引量:11
  • 4田晓东,刘忠.基于统计量的声呐图像目标检测算法[J].舰船科学技术,2007,29(1):119-122. 被引量:3
  • 5Cheng H D, Miyojim M. Automatic pavement distress detection system [ J ]. Journal of Information Sciences, 1998, 108 ( 1 ) : 219 -240.
  • 6Kirschke K R, Velinsky S. A histogram-based approach for auto- mated pavement-cracks sensing [ J ]. Journal of Transportation Engineering, 1992, 119(3 ) : 700-710.
  • 7Egemen T, Vimn R A, Halil C, et al. Digital image processing for pavement distress analyses [ C ]//The 2005 Mid-Continent Transportation Research Symposium. Ames, Iowa, USA: Iowa State University, 2005 : 1-13.
  • 8Li Q Q, Liu X L. A model for segmentation and distress statistic of massive pavement image based on muli-sacle strategies [ J ]. The International Archives of the Photogrammetry, Remote Sens- ing and Spatial information Sciences, 2008, 37( B5 ) : 63-68.
  • 9Bahram J, Jack S, Sherif K, et al. Pilot for automated detection and classification of road surface degradation features, JHR 03- 293 [ R]. Connecticut, USA: Connecticut Transportation Institu- te, 2003.
  • 10Chang H D, Chen J R, Chris G, et al. Novel approach to pave- ment cracking detection based on fuzzy set theory[ J]. Journal of Computing in Civil Engineering, 1999, 13(4) : 270-280.

共引文献116

同被引文献36

引证文献4

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部