期刊文献+

无线可充电传感器网络充电算法研究 被引量:6

Research on charging algorithm for wireless rechargeable sensor network
在线阅读 下载PDF
导出
摘要 采用无线充电为传感器节点充电是一种解决无线传感器网络能量问题的可行方案。为了得到充电效率更高的充电路径,提出一种基于收益的无线可充电传感器网络充电算法。根据节点的能耗定义自适应收益,每次选择部分节点进行充电,建立数学模型,并提出一种基于最大-最小蚂蚁系统的算法求解。实验结果表明:与先来先服务和可抢占的最近任务优先算法相比,采用本算法充电的网络效用更高、节点剩余生命方差更小且节点休眠比率更低。 Charging the sensor nodes with wireless charging is a feasible solution for energy problem of wireless sensor networks(WSNs).In order to obtain a more efficient charging path,a charging algorithm for wireless rechargeable sensor networks based on income is proposed.According to the energy consumption of nodes,the adaptive income is defined,and partial nodes are selected for charging each time,a mathematical model is established and an algorithm based on the max-min ant system is proposed to solve the problem.The experimental results show that compared with the first-come-first-service and nearest-job next with preemption,the proposed algorithm has higher network utility,smaller node residual life variance and lower node dormancy ratio.
作者 刘蕴娴 朱江 徐雁冰 刘昊霖 LIU Yunxian;ZHU Jiang;XU Yanbing;LIU Haolin(College of Information Engineering,Xiangtan University,Xiangtan 411105,China;Key Laboratory of Hunan Province for Internet of Things and Information Security,Xiangtan University,Xiangtan 411105,China)
出处 《传感器与微系统》 CSCD 2020年第2期14-17,共4页 Transducer and Microsystem Technologies
基金 赛尔网络下一代互联网技术创新项目(NGII20160310) 湖南省自然科学基金资助项目项目(2017JJ3316) 湖南省教育厅项目(16C1547) 湖南省科技计划资助项目(2018TP1036)
关键词 无线传感器网络 能耗不均 无线充电 充电路径规划 wireless sensor networks(WSNs) uneven energy consumption wireless charging charging path planning
  • 相关文献

参考文献3

二级参考文献122

  • 1王颖,谢剑英.一种自适应蚁群算法及其仿真研究[J].系统仿真学报,2002,14(1):31-33. 被引量:232
  • 2王玮.建立21世纪无所不在的网络社会——浅谈日本u-Japan及韩国u-Korea战略[J].信息网络,2005(7):1-4. 被引量:12
  • 3苏畅,徒君.一种自适应最大最小蚁群算法[J].模式识别与人工智能,2007,20(5):688-691. 被引量:14
  • 4Dorigo M,Maniezzo V,Colorni A.Ant System:Optimization by a colony cooperating agents [J].IEEE Transactions on Systems,Man,and Cybernetics -- Part B,1996, 26(1): 29-41.
  • 5Stuyzle,T,Hoos H.H.MAX-MIN Ant System [J].Future Generation Computer Systems, 2000, 16(8): 889-914.
  • 6Dorigo M,Gambardella L.M.Ant Colony System:A cooperative learning approach to the traveling salesman problem [J]. IEEE Transactions on Evolutionary Computation,1997, 6(4): 317-365.
  • 7Sinha Ashish.Is that a robot operating in your mouth. [J].Journal of Anaesthesiology Clinical Phar- macology, 2012, 28(2).
  • 8A.Y.Abdelaziz, Rehaln A.Osama, and Salem M.Elkhodary. Application of ant colony optimization and harmony search algorithms to reconfiguration of radial distribution networks with distributed generations[J]. Journal of Bioinformatics and Intelligent Control, 2012, 1(1): 86-94.
  • 9Hojjatollah Ahangarikiasari, Mehdi Rahmani Saraji, and Mohammad Torabi. Investigation of Code Complexity of an Innovative Algorithm Based on ACO in Weighted Graph Traversing and Compare it to Traditional ACO and Bellman-Ford[J]. Journal of Bioinforxnatics and Intelligent Control, 2013, 2(1): 73-78.
  • 10Spaans J.TH-A-213AB-01: A Novel Method to Accelerate Optimization by Employing Approxi- mate Dose Values[J]. Medical Physics, 2012, 39(6): 121-125.

共引文献50

同被引文献32

引证文献6

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部