期刊文献+

状态转移模式的三支增量挖掘 被引量:2

A Three-way Incremental Updating Method of State Transition Pattern
在线阅读 下载PDF
导出
摘要 针对动态多元时间序列(MTS)上的状态转移模式(STAP)挖掘问题,提出一种准确高效的三支增量挖掘算法(3IU-STAP)。该算法根据原始数据、已有频繁STAP和增量数据构造出候选模式,使用频繁阈值将其划分至正域、负域以及边界域。仅边界域中的候选模式需要延迟决策,即通过扫描数据集来判断其是否频繁。准确性方面,设计了增量数据补齐技术,获得候选模式实际出现次数。效率方面,使用了向下封闭性质来控制候选模式数量,尽可能减少对数据的扫描。在4个真实数据集上的实验结果表明,与非增量方法相比,3IU-STAP可以得到准确结果,同时显著提高效率。 An accurate and efficient three-way decision based incremental mining algorithm for mining state transition patterns(STAP)was proposed for dynamic MTS.Based on the original data,existing frequent STAPs and incremental data,candidate STAPs were constructed and divided into positive,negative and boundary regions through a frequent threshold.Only those STAPs in boundary region was delayed in decision making.The data sets were scanned to check whether they were frequent.In terms of accuracy,incremental data completion technique was designed to obtain the actual occurrences of candidate STAPs.In terms of efficiency,the downward closure property was introduced to control the number of candidate patterns and minimize the scanning of data.Results of experiments undertaken on four real data sets showed that 3IU-STAP could achieve accurate results while significantly improving time performance compared with non-incremental methods.
作者 曾圣超 张智恒 闵帆 张紫茵 ZENG Shengchao;ZHANG Zhiheng;MIN Fan;ZHANG Ziyin(Department of Computer Science,Southwest Petroleum University,Chengdu 610500,China;School of Information and Engineering,Sichuan Tourism University,Chengdu 610100,China)
出处 《郑州大学学报(理学版)》 CAS 北大核心 2020年第1期16-23,共8页 Journal of Zhengzhou University:Natural Science Edition
基金 国家自然科学基金项目(41604114) 四川省科技创新团队项目(2019JDTD0017) 四川省科技厅项目(2019YJ0314)
关键词 多元时序 三支决策 序列模式 增量挖掘 multivariate time-series three-way decision sequence pattern incremental discovery
  • 相关文献

参考文献5

二级参考文献43

  • 1张浩然,汪晓东.回归最小二乘支持向量机的增量和在线式学习算法[J].计算机学报,2006,29(3):400-406. 被引量:112
  • 2王晓丹,郑春颖,吴崇明,张宏达.一种新的SVM对等增量学习算法[J].计算机应用,2006,26(10):2440-2443. 被引量:21
  • 3AYRES J, GEHRKE J, YIU T, et al. Sequential pattern mining using a bitmap representation [C]// Proceedings of the ACM International Conference on Knowledge Discovery and Data Mining. Edmonton: ACM, 2002 : 429 - 435.
  • 4PASQUIER N, BASTIDE Y, TAOUIL R, et al. Discovering frequent closed itemsets for association rules [C]// Proceedings of the 7th International Conference on Database Theory. Jerusalem: Springer, 1999: 398-416.
  • 5PEI J, HAN J, MAO R. CLOSET: an efficient algorithm for mining frequent closed itemsets [C] // Proceedings of the 2000 ACM SIGMOD International Workshop Data Mining and Knowledge Discovery. Dallas: ACM, 2001:11-20.
  • 6WANG J, HAN J, PEI J. CLOSET+ : searching for the best strategies for mining frequent closed itemsets [C]// Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Washington: ACM, 2003: 236- 245.
  • 7ZAKI M J, HSIAO C. CHARM: an efficient algorithm for closed itemset mining [C]// Proceedings of the Second SIAM International Conference on Data Mining. Arlington: SIAM, 2002: 457-473.
  • 8HAN J, WANG J, LU Y, et al. Mining Top-K frequent closed patterns without minimum support [C]// Proceedings of the 2002 IEEE International Conference on Data Mining. Maebashi: IEEE, 2002:211 -218.
  • 9YAN X, HAN J, AFSHAR R, CloSpan: mining closed sequential patterns in large databases [C]// Proceedings of the 3th SIAM International Conference on Data Mining. San Francisco: SIAM, 2003: 166- 177.
  • 10WANG J, HAN J. BIDE: efficient mining of frequent closed sequences [C]// Proeeedlngs of the 20th Interna- tional Conference on Data Engineering. Boston: IEEE, 2004:79 - 90.

共引文献22

同被引文献18

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部