期刊文献+

卷积神经网络人脸检测算法 被引量:10

Convolutional neural network face detection algorithm
在线阅读 下载PDF
导出
摘要 传统人脸检测算法往往不能自动地从原始图像中提取有用的检测特征,而卷积神经网络可以轻易地提取高维度的特征信息,广泛用于图像处理领域。针对上述缺点,采用简单高效的深度学习Caffe框架并通过AlexNet网络训练,数据集为LFW人脸数据集,得出一个模型分类器,对原始图像数据进行图像金字塔变换,并通过前向传播得到特征图,反变换得出人脸坐标,采用非极大值抑制算法得出最优位置,最后达到一个二分类的人脸检测结果。该方法可以实现不同尺度的人脸检测,具有较高的精度,可用于构建人脸检测系统。 Traditional face detection algorithms often cannot extract useful detection features from the original image, and convolu-tional neural networks can easily extract high-dimensional feature information, which is widely used in image processing. In view of the above shortcomings, a simple and efficient deep learning Caffe framework is adopted and trained by AlexNet network. The data set is LFW face dataset, and a model classifier is obtained. Image pyramid transformation is performed on the original image data,and feature graph is obtained by forward propagation. The inverse transformation yields the face coordinates, uses the non-maximum suppression algorithm to obtain the optimal position, and finally reaches a two-class face detection result. The method can realize face detection with different scales and has high precision, and can be used to construct a face detection system.
作者 王静波 孟令军 Wang Jingbo;Meng Lingjun(National Key Laboratory for Electronic Measurement Technology,North University of China,Taiyuan 030051,China)
出处 《电子技术应用》 2020年第1期34-38,共5页 Application of Electronic Technique
关键词 人脸检测 卷积神经网络 深度学习 图像金字塔 非极大值抑制 face detection convolutional neural network deep learing image pyramid non-maximum suppression
  • 相关文献

参考文献9

二级参考文献15

共引文献109

同被引文献70

引证文献10

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部