期刊文献+

基于无模型自适应的粗煤泥分选控制系统研究 被引量:6

Research on control system of coarse slime separator based on model-free adaptive
在线阅读 下载PDF
导出
摘要 以干扰床TBS粗煤泥分选控制系统为研究对象,针对其难以建立被控对象精准数学模型的问题,采用紧格式的无模型自适应控制方法,设计开发了粗煤泥分选系统控制器,并与传统PID和Fuzzy-PID控制进行仿真对比。结果表明:粗煤泥分选系统的无模型自适应控制超调量小,跟踪用时短,可以有效地减少因控制系统超调量过高而造成的跑粗现象;并且相比传统PID和Fuzzy-PID控制,其适应能力和抗干扰能力更强,能有效提高精煤产品的质量。 Taking interfering bed TBS slime separation control system as the object of the research,for which the problem is difficult to establish precise mathematical model of the controlled object,a tight format of model-free adaptive control method,designed and developed slime separation system controller and simulation comparison with traditional PID and Fuzzy-PID control.The results show that the model-free adaptive control of the coarse slime sorting system is small,and the tracking time is short,which can effectively reduce the rough running phenomenon caused by the excessive overshoot of the control system;and compared with the traditional PID and Fuzzy-PID control,its adaptability and anti-interference ability are stronger,which can effectively improve the quality of clean coal products.
作者 刘晓红 韦鲁滨 于海洋 LIU Xiaohong;WEI Lubin;YU Haiyang(School of Chemical&Environmental Engineering,China University of Mining&Technology(Beijing),Beijing 100083,China;Shandong Jiaotong University,Jinan 250357,China)
出处 《中国矿业》 北大核心 2020年第2期82-87,共6页 China Mining Magazine
关键词 粗煤泥分选机 无模型自适应 分选控制系统 非线性控制系统 coarse slime sorting machine model-free adaptation sorting control system nonlinear control system
  • 相关文献

参考文献3

二级参考文献34

  • 1董连平,樊民强.自生介质旋流器的研究应用现状[J].山西煤炭,2002(4):19-22. 被引量:12
  • 2赵广富,周玉森.煤用螺旋分选机机理的探讨[J].选煤技术,1994,22(2):13-15. 被引量:11
  • 3张悦秋,谢广元,俞和胜.煤泥重介旋流器选煤技术现状及发展[J].煤炭工程,2005,37(12):14-16. 被引量:36
  • 4濮卫兴,陈来九.用B样条神经网络设计自适应模糊控制器[J].控制理论与应用,1996,13(4):448-454. 被引量:8
  • 5Narendra K S, Parthasarathy K. Identification and Control of Dynamic Systems Using Neural Networks [J]. IEEE Trans. neural networks, 1990, 1(1): 4-27.
  • 6Narendra K S. Neural Networks for Control: Theory and Practice [A]. Proc. of The IEEE [C]. 1996, 84(10): 1385-1406.
  • 7Cabrera J B D, Narendra K S. Issues in the Application of Neural Networks for Tracking Based on Inverse Control [J]. IEEE Trans., automatic control, 1999, 44(11): 2007-2027.
  • 8Narendra K S, Mukhopadhyay S. Adaptive Control Using Neural Networks and Approximate Models [J]. IEEE Transactions on Neural Networks, 1997, 8(3): 475-485.
  • 9侯忠生.非参数模型及其自适应控制理论[M].北京:科学出版社,1998..
  • 10Tan K K, Lee T H, Huang S N, Leu F M. Adaptive Predictive Control of a Class of SISO Nonlinear Systems [J]. Dynamics and Control, 2001, 11(2): 151-174.

共引文献44

同被引文献66

引证文献6

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部