期刊文献+

融合全域与局域特征的深度卷积网络鸟类种群识别 被引量:6

Bird Species Identification Based on Deep Convolutional Network with Fusing Global and Local Features
在线阅读 下载PDF
导出
摘要 【目的】基于鸟类影像数据,探讨全域与局域特征融合手段,结合深度卷积神经网络理论,建构鸟类种群识别模型,以期为森林与湿地的监控与治理提供新的手段。【方法】首先,依据人类识别物体从整体到局部的生理过程,采用跳跃结构实现物体整体信息与局部信息的交互,该模型主要采用2个模型框架提取鸟类的全域和局域部件特征,并采用跳跃结构,提出融合模块(Fusion block)结构进行特征融合,将全局特征信息传递至局部特征抽取模块。该模型训练阶段需提供鸟类局部的部位标注信息,而测试阶段采用Faster R-CNN模型自动提取其鸟类局部标注信息。其次,探讨不同鸟类局部影像信息对模型的影响,最后,通过对比不同网络分类模型和鸟类数据集,验证模型的有效性和适用性。【结果】该鸟类种群分类模型具有较高的分类精度,总体分类精度达90%以上;对于不同的鸟类局部影像信息,其分类精度表现出一定的差异性,其中基于鸟类头部局部影像的网络分类模型总体分类精度最高;Faster R-CNN模型对鸟类局部影像定位精度较高,测试阶段采用人工标注的局部影像标签和Faster R-CNN模型预测的局部影像标签对模型的总体分类精度差异小;对比Inception-V1、Res Net-101、Dense Net-121以及Bilinear CNN等网络分类模型总体分类精度,该模型总体分类精相对较高,具有一定的有效性;对比使用NABirds鸟类数据集的分类效果,该模型总体分类表现较好,具有一定的适用性。【结论】该鸟类种群分类模型具有较好的识别效果以及有效性,可为森林与湿地的监控和治理提供合理有效的依据。 【Objective】In this study,based on the bird images,we construct a bird population identification model with the deep convolutional neural network theory by combining the global and local features fusion method,in order to provide a new approach for monitoring and management of forests and wetlands.【Method】First of all,according to the physiological process of the object identification of human from entireness to part,the jump structure was used to implement the interaction between global and local information.In the proposed model,two model frameworks are mainly used to extract the global and local features of birds,and the jump structure is used to propose the fusion module structure for feature fusion,which transfers the global feature information to local feature extraction module.In the training stage of the model,we need to provide the labeling information on the local parts of birds,while in the test stage,we use Faster R-CNN model to automatically extract the labeling information on the local parts of birds.Secondly,we discussed the effects of different bird local image information on the model.Finally,the validity and applicability of the model are verified by comparing different network classification models and bird datasets.【Result】The bird species classification model proposed in this paper has high classification accuracy,and the overall classification accuracy is over 90%.For the image information of different parts of a bird,the classification accuracy of the model shows a certain difference,among which the overall classification accuracy of the network classification model based on the bird’s head image is the highest.The Faster R-CNN model has a high accuracy in bird part image locating.There is little difference in the overall accuracy between the manually labeled local image tag and the local image tag predicted by Faster R-CNN model in the test stage.Compared with the overall classification accuracy of the network classification models such as Inception-V1、ResNet-101、DenseNet-121 and Bilinear CNN,the overall classification accuracy of the model proposed in this paper is relatively high,that verifies the effectiveness of the proposed classification model of bird.Compared with the classification accuracy by using NABirds bird dataset,the overall classification performance of the proposed model is better,which verifies the applicability of the proposed model.【Conclusion】The proposed bird species classification model has good identification results and effectiveness,which can provide a reasonable and effective basis for monitoring and management of forests and wetlands.
作者 林志玮 丁启禄 刘金福 Lin Zhiwei;Ding Qilu;Liu Jinfu(College of Computer and Information Science,Fujian Agriculture and Forestry University ,Fuzhou 350002;College of Forestry,Fujian Agriculture and Forestry University ,Fuzhou 350002;Forestry Post-Doctoral Station of Fujian Agriculture and Forestry University ,Fuzhou 350002;Key Laboratory for Ecology and Resource Statistics of Fujian Province ,Fuzhou 350002;Cross-Strait Nature Reserve Research Center,Fujian Agriculture and Forestry University ,Fuzhou 350002;Fuzhou Central Branch of People’s Bank of China ,Fuzhou 350003)
出处 《林业科学》 EI CAS CSCD 北大核心 2020年第1期133-144,共12页 Scientia Silvae Sinicae
基金 教育部人文社会科学研究项目(18YJCZH093) 福建省林业科学研究项目(KH1701390) 海峡博士后交流资助计划 中国博士后科学基金面上项目(2018M632565)
关键词 鸟类种群识别 多框架深度神经网络 全域与局域特征 bird identification deep convolutional neural network global and local components
  • 相关文献

参考文献1

二级参考文献80

  • 1Fumess RW, Greenwood JJD (1993) Birds as Monitors of En- vironmental Change. Chapman & Hall, London.
  • 2Genelly RE, Rudd RL (1956) Effects of DDT, toxaphene, and dieldrin on pheasant reproduction. The Auk, 73, 529-539.
  • 3George JL, Stickel WH (1949) Wildlife effects of DDT dust used for tick control on a Texas prairie. American Midland Naturalist, 42, 228 -237.
  • 4Gibbons DW, Gregory RD (2006) Birds. In: Ecological Census Techniques: A Handbook (ed. Sutherland WJ), pp. 308-350. Cambridge University Press, Cambridge.
  • 5Greenwood JJD, Baillie SR, Gregory RD, Peach W J, Fuller RJ (1995) Some new approaches to conservation monitoring of British breeding birds. Ibis, 137, S 16-S28.
  • 6Gregory RD (2000) Development of breeding bird monitoring in the United Kingdom and adopting its principles elsewhere. The Ring, 22, 35-44.
  • 7Gregory RD, Baillie SR (1994)Evaluation of Sampling Strate- gies for 1-km Squares for Inclusion in the Breeding Bird Survey. BTO, Research Report No. 139, Thetford.
  • 8Gregory RD, Baillie SR (2004) Survey design and sampling strategies for breeding bird monitoring. Bird Census News, 13, 19-31.
  • 9Gregory RD, Bashford RI, Balmer DE, Marchant JH, Wilson AM, Baillie SR (1996) The Breeding Bird Survey. British Trust for Ornithology, Thetford.
  • 10Gregory RD, Gibbons DW, Impey A, Marchant JH (1999) Generation of the Headline Indicator of Wild Bird Popula- tions. BTO & RSPB, BTO Research Report 221, Thetford & Sandy.

共引文献63

同被引文献63

引证文献6

二级引证文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部