摘要
针对高速道岔直尖轨非工作边表面出现纵向裂纹的问题,通过建立车辆道岔多体动力学模型和三维弹塑性轮轨接触有限元模型,分析倒圆弧半径对直尖轨等效应力及其作用位置的影响。结果表明:尖轨顶宽30mm到顶宽40mm断面间易发生非工作边表面裂纹,其中顶宽35mm断面的受力状态最为不利;倒圆弧半径取值越大,对尖轨降低值的影响越大,为降低对车辆轨道动力性能的影响,在相同条件下,应尽可能选择较小半径的倒圆弧;直尖轨倒圆弧能够有效降低内部的等效应力,并能增大应力作用位置到非工作边的距离;综合考虑直尖轨降低值和受力状态,倒圆弧半径取3mm时优于其他半径取值。
In view of the problem of the longitudinal surface crack on the non-working side of straight switch rail of high-speed railway turnout,the vehicle-turnout multi-body dynamic model and three-dimensional elastic-plastic model of wheel-rail contact were established to analyze the effect of transition radius on equivalent stress and its position of straight switch rail.The results show that surface cracks of non-working side are likely to occur between section with switch rail head width from 30 mm to 40 mm,where the stressing state of the section with rail head width of 35 mm is the worst.The greater the value of transition radius,the greater the impact on the height reduction of the switch rail.In order to reduce the impact on dynamic characteristics of vehicle-rail system,a smaller transition radius should be considered as far as possible under the same conditions.The transition arc can effectively reduce the equivalent stress of the switch rail,and increase the distance from stress working position to non-working side.The radius of 3 mm of transition arc is superior to other radii considering the height reduction and stressing state of the switch rail.
作者
马晓川
陈漫
徐井芒
刘林芽
王平
MA Xiaochuan;CHEN Man;XU Jingmang;LIU Linya;WANG Ping(Engineering Research Center of Railway Environment Vibration and Noise,Ministry of Education,East China Jiaotong University,Nanchang 330013,China;Key Laboratory of High-speed Railway Engineering,Ministry of Education,Southwest Jiaotong University,Chengdu 610031,China)
出处
《铁道学报》
EI
CAS
CSCD
北大核心
2020年第2期96-101,共6页
Journal of the China Railway Society
基金
国家自然科学基金(51608459,U1734207,51808221)
江西省教育厅科学技术研究项目(GJJ180338)
江西省青年科学基金(20192BAB216035,20181BAB216029)
关键词
高速道岔
裂纹
倒圆弧半径
弹塑性
等效应力
high-speed turnout
crack
transition radius
elastic-plasticity
equivalent stress