期刊文献+

基于卷积去噪自编码器的芯片表面弱缺陷检测方法 被引量:12

Detection Method of Chip Surface Weak Defect Based on Convolution Denoising Auto-encoders
在线阅读 下载PDF
导出
摘要 芯片表面缺陷会影响芯片的外观和性能,因此表面缺陷检测是芯片生产过程中的重要环节。具有缺陷与背景对比度低、缺陷较小等特点的弱缺陷给传统检测方法带来了挑战。因为近年来深度学习在机器视觉领域展现出了强大的能力,所以文中采用基于深度学习的方法来研究芯片表面弱缺陷的检测问题。该方法将芯片表面缺陷看作噪音,首先应用卷积去噪自编码器(Convolutional Denoising Auto-encoders,CDAE)重构无缺陷图像,然后用重构的无缺陷图像减去输入图像,获得包含缺陷信息的残差图。因为残差图中已经消除了背景的影响,所以最后可以基于残差图较容易地进行缺陷检测。由于基于CDAE重构芯片背景的无缺陷图像时存在随机噪音,导致弱缺陷可能会湮没在重构噪音中,为此,文中提出了重叠分块策略抑制重构噪音,以便更好地检测弱缺陷。因为CDAE是无监督学习网络,所以训练时无需进行大量的人工数据标注,这进一步增强了该方法的可应用性。通过对真实芯片表面数据进行测试,验证了所提方法在芯片表面检测上的有效性。 Chip surface defects can affect the appearance and performance of the chip.Therefore,surface defect detection is an important part of the chip production process.The automatic detection method based on machine vision attracts much attention because of its advantages of low cost and high efficiency.Weak defects such as low contrast between defects and background and small defects,bring challenges to traditional detection methods.Because deep learning has shown strong capabilities in the fields of machine vision in recent years,this paper studied the detection of weak defects on the chip surface by using the method based on deep learning.Chip surface defects were regarded as noise in this menthod.Firstly,convolutional denoising auto-encoders(CDAE)is applied to reconstruct the image without defect.Then,the reconstructed image without defect is used to subtract the input image,thus obtaining the residual image with defect information.Because the influence of background has been eliminated from the residual diagram,it is easier to detect defects based on the residual diagram.Because of the random noise in the process of reconstructing defect-free image from chip background image based on CDAE,the weak defect may be lost in the reconstructed noise.Therefore,this paper proposed an overlapping block strategy to suppress the reconstructed noise,so as to better detect the weak defect.Because CDAE is an unsupervised learning network,there is no need to perform a large amount of manual data annotation during training,which further enhances the applicability of the method.By using the real chip surface data provided by the paper partner,the effectiveness of the proposed method in chip surface detection is verified.
作者 罗月童 卞景帅 张蒙 饶永明 闫峰 LUO Yue-tong;BIAN Jing-shuai;ZHANG Meng;RAO Yong-ming;YAN Feng(School of Computer Science and Information Engineering,Hefei University of Technology,Hefei 230601,China)
出处 《计算机科学》 CSCD 北大核心 2020年第2期118-125,共8页 Computer Science
基金 国家重点研发计划(2017YFB1402200) 安徽省科技强警计划项目(1604d0802009) 浙江大学CAD&CG国家重点实验室开放课题(A1814) 中央高校基本科研业务费专项资金(JZ2017HGBH0915) 安徽省高等学校省级质量工程项目(2017jyxm0045)~~
关键词 芯片表面缺陷 缺陷检测 深度学习 无监督学习 卷积去噪自编码器 Chip surface defects Defect detection Deep learning Unsupervised learning Convolution denoising auto-encoders
  • 相关文献

参考文献2

二级参考文献28

  • 1Bengio Y. learning Deep Architectures for Al. Foundations andTrends in Machine Learning, 2009 , 2(1): 1-127.
  • 2Hinton G E,SaIakhut(Jinov R R. Reducing the Dimensionality ofData with Neural Networks. Science, 2006, 313(5786) : 504-507.
  • 3Bengio Y, Delalleau 0. On the Expressive Power of Deep Archilec-tures // Proc of the 22nd International Conference on Algorithmiclearning Theory. Ksp[M], Finland,2011: 18-36.
  • 4Yoshua B, l^eCun Y. Scaling Learning Algorithms towards Al.Cambridge,USA : MIT Press, 2007.
  • 5Dahl G E, Yu d, Deng L, el al. Context-Dependent Pre-trainedDeep Neural Networks for Large-Vocabulary Speech Recognition.IEEE Trans on Audio, Speech and Language Processing, 2012,20(1):30-42.
  • 6Hinton G,Deng L, Yu D, et al. Deep Neural Networks for AcousticModeling in Speech Recognition : The Shared Views of FourResearch Groups. IEEE Signal Processing Magazine, 2012, 29(6) : 82-97.
  • 7Sungjoon C, Kim E, Oh S. Human Behavior Prediction for SmartHomes Using Deep Learning // Proc of the 22nd IEEE InternationalSymposium on Robot and Human Interactive Communication. Gyeo-ngju, Republic of Korea, 2013 : 173-179.
  • 8林妙真.基于深度学习的人脸识别研究.硕士学位论文.大连:大连理工大学,2013.
  • 9Wang N Y, Yeung D. Learning a Deep Compact Image Represen-tation for Visual Tracking // Proc of the 27th Annual Conferenceon Neural Information Processing Systems. Lake Tahoe, USA,2013: 809-817.
  • 10Tsai D M,Wu S C,Li W C. Defect Detection of Solar Cells in E-lectroluminescence Images Using Fourier Image Reconstruction.Solar Energy Materials and Solar Cells, 2012 , 99 : 250-262.

共引文献93

同被引文献122

引证文献12

二级引证文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部