期刊文献+

高分辨率极化SAR影像KummerU分布非监督分类方法 被引量:1

The Unsupervised Classification Method with KummerU Distribution of High Resolution PolSAR Images
在线阅读 下载PDF
导出
摘要 针对高分辨率极化SAR数据特征分布不再符合同质区域假设,进而导致基于统计分布的极化SAR影像非监督分类方法精度下降的问题,将具有广泛适用性的KummerU分布嵌入粒子群寻优聚类算法,提出了新的极化SAR影像非监督分类算法(PSO-KummerU方法):首先基于极化SAR统计特征对数据进行初分类,然后采用极化SAR统计特征与粒子群优化算法进一步进行聚类中心求解,分类准则部分采用KummerU距离改进代替传统的Wishart距离度量准则;采用3种非监督分类方法(H/α-Wishart、PSO-Wishart、PSO-KummerU方法)进行分类对比实验.实验结果表明:基于KummerU分布的PSO-KummerU方法与采用Wishart距离的聚类方法相比,目视效果明显改进,整体分类精度提高14%以上. The feature distribution of high-resolution polarimetric SAR data no longer conforms to the hypothesis of homogeneous region,which leads to the decline of unsupervised classification accuracy of polarimetric SAR image based on statistical distribution.A novel unsupervised classification algorithm for PolSAR image is proposed by embedding the widely applicable KummerU distribution into the Particle Swarm Optimization clustering algorithm.Firstly,the PolSAR data was classified based on the polarimetric statistical characteristics.Then combining the PolSAR statistical characteristics with PSO algorithm,a further solution to the clustering centers was found with the PSO-KummerU algorithm.In the part of the classification criteria,KummerU distance was used to replace the traditional Wishart distance to improve the classification result.Finally,3 kinds of unsupervised classification methods(H/α-Wishart,PSO-Wishart,PSO-KummerU)were used for the comparison experiments.The experimental results show that the visual effect of PSO-KummerU clustering method based on KummerU distribution is significantly improved compared with the Wishart distance clustering method,and the overall classification accuracy is improved by more than 14%.
作者 朱腾 何汉武 黄铁兰 张坡 ZHU Teng;HE Hanwu;HUANG Tielan;ZHANG Po(School of Surveying and Remote Sensing Information,Guangdong Polytechnic of Industry and Commerce,Guangzhou 510510,China;School of Electromechanical Engineering,Guangdong University of Technology,Guangzhou 510039,China;School of Computer and Information Engineering,Guangdong Polytechnic of Industry and Commerce,Guangzhou 510510,China)
出处 《华南师范大学学报(自然科学版)》 CAS 北大核心 2020年第1期85-90,共6页 Journal of South China Normal University(Natural Science Edition)
基金 国家重点研发计划项目(2018YFB1004902) 广东省科技计划项目(2017B010110008) 广东省教育厅基础应用研究重大项目(2017GKZDXM002)
关键词 KummerU分布 极化SAR 高分辨率 粒子群算法 非监督分类 KummerU distribution polarimetric SAR high resolution particle swarm optimization algorithm unsupervised classification
  • 相关文献

参考文献7

二级参考文献63

  • 1齐清文.地学信息图谱的最新进展[J].测绘科学,2004,29(6):15-23. 被引量:38
  • 2廖克.地学信息图谱的探讨与展望[J].地球信息科学,2002,4(1):14-20. 被引量:66
  • 3许馨,杨金福,吴福朝,赵永恒.基于广义判别分析的光谱分类[J].光谱学与光谱分析,2006,26(10):1960-1964. 被引量:9
  • 4杨金福,许馨,吴福朝,赵永恒.核覆盖算法在光谱分类问题中的研究[J].光谱学与光谱分析,2007,27(3):602-605. 被引量:7
  • 5张继福,蔡江辉.面向LAMOST的天体光谱离群数据挖掘系统研究[J].光谱学与光谱分析,2007,27(3):606-609. 被引量:6
  • 6Han J W. Kambr M. Data Mining Concepts and Techniques. Beijing: Higher Education Press, 2001.
  • 7Zhang T, Ramakrishnan R, l.ivny M. Birch: An Efficient Data Clustering Method for Very Large Databases. In: Tagadish H V, Mumick I S. eds. , Proc. of the SIGMOD. Montreal: ACM Press, 1996. 103.
  • 8Guha S, Rastogi R, Shim K. CURE: An Efficient Clustering Algorithm for Large Databases. In.. Haas L M, Tiwary A, eds. , Proc. of the ACM SIGMOD Int'l Conf. on Management of Data. New York: ACM Press, 1998.
  • 9Zhang T, Ramakrishnan R, Livny M. BIRCH: An Effeient Data Clustering Method for Very Large Databases. In: Jagadish H V, Mumick I S, eds. , Proe. of the ACM SIGMOD Int'l Conf. on Management of Data. New York: ACM Press, 1996.
  • 10Hinneburg A, Keim D. An Efficient Approach to Clustering in Large Multimedia Databases with Noise. In: Agrawal R, Stolorz P E, Piatetsky-Shapiro G, eds. , Proc. of the 4th Int'l Conf. on Knowledge Discovery and Data Mining (KDD'98). New York:AAAI Press, 1998.

共引文献49

同被引文献5

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部