期刊文献+

Fucoidan-Based Theranostic Nanogel for Enhancing Imaging and Photodynamic Therapy of Cancer 被引量:4

Fucoidan-Based Theranostic Nanogel for Enhancing Imaging and Photodynamic Therapy of Cancer
在线阅读 下载PDF
导出
摘要 In this study, a fucoidan-based theranostic nanogel(CFN-gel) consisting of a fucoidan backbone, redox-responsive cleavable linker and photosensitizer is developed to achieve acti-vatable near-infrared fluorescence imaging of tumor sites and an enhanced photodynamic therapy(PDT) to induce the com-plete death of cancer cells. A CFN-gel has nanomolar a nity for P-selectin, which is overexpressed on the surface of tumor neovascular endothelial cells as well as many other cancer cells. Therefore, a CFN-gel can enhance tumor accumulation through P-selectin targeting and the enhanced permeation and retention e ect. Moreover, a CFN-gel is non-fluorescent and non-phototoxic upon its systemic administration due to the aggregation-induced self-quenching in its fluorescence and singlet oxygen generation. After internalization into cancer cells and tumor neovascular endothelial cells, its photoactivity is recovered in response to the intracellular redox potential, thereby enabling selective near-infrared fluorescence imaging and an enhanced PDT of tumors. Since a CFN-gel also shows nanomolar a nity for the vascular endothelial growth factor, it also provides a significant anti-tumor e ect in the absence of light treatment in vivo. Our study indicates that a fucoidan-based theranostic nanogel is a new theranostic material for imaging and treating cancer with high e cacy and specificity. In this study, a fucoidan-based theranostic nanogel(CFN-gel) consisting of a fucoidan backbone, redox-responsive cleavable linker and photosensitizer is developed to achieve acti-vatable near-infrared fluorescence imaging of tumor sites and an enhanced photodynamic therapy(PDT) to induce the com-plete death of cancer cells. A CFN-gel has nanomolar a nity for P-selectin, which is overexpressed on the surface of tumor neovascular endothelial cells as well as many other cancer cells. Therefore, a CFN-gel can enhance tumor accumulation through P-selectin targeting and the enhanced permeation and retention e ect. Moreover, a CFN-gel is non-fluorescent and non-phototoxic upon its systemic administration due to the aggregation-induced self-quenching in its fluorescence and singlet oxygen generation. After internalization into cancer cells and tumor neovascular endothelial cells, its photoactivity is recovered in response to the intracellular redox potential, thereby enabling selective near-infrared fluorescence imaging and an enhanced PDT of tumors. Since a CFN-gel also shows nanomolar a nity for the vascular endothelial growth factor, it also provides a significant anti-tumor e ect in the absence of light treatment in vivo. Our study indicates that a fucoidan-based theranostic nanogel is a new theranostic material for imaging and treating cancer with high e cacy and specificity.
出处 《Nano-Micro Letters》 SCIE EI CAS CSCD 2020年第4期14-28,共15页 纳微快报(英文版)
基金 supported by the Ministry of Oceans and Fisheries,Korea(the project title:Development of marine material based near infrared fluorophore complex and diagnostic imaging instruments) by a Grant(1910070)from the National Cancer Center
关键词 FUCOIDAN Theranostic nanogel P-SELECTIN Activatable ANTI-ANGIOGENIC Fucoidan Theranostic nanogel P-selectin Activatable Anti-angiogenic
  • 相关文献

同被引文献13

引证文献4

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部