期刊文献+

基于SOM-RBF神经网络的用电量预测模型研究 被引量:3

Research of Electricity Consumption Prediction Model Based on SOM-RBF Algorithm
在线阅读 下载PDF
导出
摘要 随着我国电网建设的高速发展,从日常电力负荷变化趋势剖析未来年度用电量已经成为电网建设的关键问题之一。根据1997~2016年湖北省年用电量及其10个影响因子的数据作为样本,提出了一种自组织特征映射神经网络(Self-organizing Feature Maps,SOM)与多变量的径向基函数(Radial Basis Function,RBF)结合的人工神经网络预测模型新方法。采用先聚类、再分类预测的方法,解决了由于RBF神经网络对于少量样本和训练样本点分散所导致的预测精度降低的问题,改进的神经网络泛化能力有所提高。结果表明:通过SOM-RBF组合算法进行预测,其相对误差维持在3%以下,平均相对误差为1.88%,预测效果较BP神经网络和RBF神经网络有较大的提升。这表明SOM-RBF组合算法可有效的用于用电量预测,具有较高的实用价值。 With the rapid development of power grid construction in China,it has become one of the key issues to analyze the annual power consumption in the future from the trend of daily power load change.Based on the data of annual electricity consumption and its 10 influencing factors in Hubei Province from 1997 to 2016,a new method of artificial neural network prediction model combining self-organizing feature maps(SOM)and multivariable radial basis function(RBF)is proposed.The method of clustering and classification prediction is used to solve the problem of the prediction accuracy reduction caused by the scattering of a small number of samples and training samples by RBF neural network,and the generalization ability of the improved neural network is improved.The results show that the relative error of SOM-RBF is less than 3%,and the average relative error is 1.88%.The prediction effect is better than that of BP neural network and RBF neural network.This shows that SOM-RBF combination algorithm can be effectively used for power consumption prediction,and of high practical value.
作者 毛锦伟 梁甲 张修文 MAO Jinwei;LIANG Jia;ZHANG Xiuwen(Hubei Key Laboratory of Disaster Prevention and Mitigation, China Three Gorges University, Yichang 443002, China;College of Civil Engineering & Architecture, China Three Gorges University, Yichang 443002, China)
出处 《安徽电气工程职业技术学院学报》 2020年第1期35-41,共7页 Journal of Anhui Electrical Engineering Professional Technique College
关键词 自组织特征映射神经网络 径向基函数 混合算法 用电量预测 self-organizing feature maps radial basis function hybrid algorithms electricity consumption forecast
  • 相关文献

参考文献5

二级参考文献57

  • 1康重庆,夏清,张伯明.电力系统负荷预测研究综述与发展方向的探讨[J].电力系统自动化,2004,28(17):1-11. 被引量:504
  • 2李国杰.大数据研究的科学价值[J].中国计算机学会通讯,2012,8(9):8-15.
  • 3赵国栋,易欢欢,糜万军,鄂维南.大数据时代的历史机遇[M].北京:清华大学出版社,2013:前言.
  • 4Gantz J, Reinsel D. Extracting value from chaos [J]. Proceedings oflDCiView, 2011: 1-12.
  • 5GTM Research. The soft grid 2013-2020. Big data & utility analytics for smart grid-research excerpt [R/OL]. GTM, 2013. http-//www.giiresearch.com/reportJ gm257044-soft-grid-big-data-utility-analytics-smart-grid.h tml.
  • 6EPRI. Big data challenges for the grid: EPRI survey results and analysis Data analytics and applications demonstration newsletter[R/OL]. 2013. http://www. smartgridnews.com/artmardpublish/Business_Analytics/Bi g-Data-challenges-for-the-grid-EPRI-survey-results-and-a nalvsis.
  • 7EPRI. The whys, whats, and hows of managing data as an asset[R]. USA: EPRI, 2014.
  • 8IBM. Managing big data for smart grids and smart meters[R/OL]. IBM Software White Paper. http://www. smartgridnews.com/artman/publish/Business_Strategy/ Managing-big-data-for-smart-grids-and-smart-meters-524 8.html.
  • 9Oracle Utilities. Utilities and big data: A seismic shift is beginning[R]. An Oracle Utilities White Paper.
  • 10科技部.国家高技术研究发展计划(863计划)2015年度项目申报指南[EB/OL].http://program.most.gov.cn/htmledit/639A0448.5482.4F63.42C4.95368125A2F8.html.

共引文献686

同被引文献16

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部