期刊文献+

基于网中网卷积神经网络的红枣缺陷检测 被引量:22

Detection of jujube defects based on the neural network with network convolution
在线阅读 下载PDF
导出
摘要 提出了一种基于网中网卷积神经网络对红枣进行缺陷检测的方法,在原有AlexNet卷积神经网络的基础上增加了1×1隐含感知层,增强了网络的非线性以提取更抽象的特征;并采用全局平均池化层的方式替换全连接层,减少大量参数的同时提升了识别准确率。对新疆骏枣进行了实测,可将红枣分为好枣、黑斑枣、皱枣、叠枣、脱皮枣、黄皮枣和裂枣7类,表明该方法与基于常规SVM的视觉检测方法和基于AlexNet网络的分类方法相比,分类效果得到了有效提升。 We proposed a method of defect detection for jujube based on a neural network with network-in-network convolutional(NIN-CNN).This method adds 1×1 hidden perception layer to the original AlexNet convolution neural network;enhances the non-linearity of the network to extract more abstract features;and replaces the fully connected layer with the global average pooling layer,which improves the recognition accuracy while reducing a large number of parameters.In this study,Jun jujube in Xinjiang is tested.The jujube is divided into seven categories,including healthy jujube,black-spotted,wrinkled,overlapping,peeling,yellow-skinned and crack.The experimental results show that the classification effect of the proposed method is improved effectively, compared with the conventional visual detection method with SVM and the classification method with AlexNet network.
作者 杨志锐 郑宏 郭中原 许晓航 YANG Zhi-rui;ZHENG Hong;GUO Zhong-yuan;XU Xiao-hang(School of Electronic Information,Wuhan University,Wuhan,Hubei 430072,China)
出处 《食品与机械》 北大核心 2020年第2期140-145,181,共7页 Food and Machinery
关键词 红枣 缺陷检测 网中网卷积神经网络 jujubes defect detection neural network with network-in-network convolution
  • 相关文献

参考文献9

二级参考文献90

共引文献98

同被引文献246

引证文献22

二级引证文献63

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部