摘要
由于功能梯度材料(FGM)性质的特殊性,现有含裂纹FGM结构应力强度因子计算方法难以避免复杂的矩阵运算以及数值积分。该文针对含外表面环向裂纹FGM圆筒,利用FGM圆筒与均匀材料圆筒裂纹尖端应力之间的比例关系,将复杂的FGM圆筒应力强度因子求解问题转化为简单的应力值提取问题以及经验公式计算问题,仅由均匀材料圆筒应力强度因子经验公式、均匀材料圆筒和FGM圆筒裂纹尖端应力比值即可得到任意含裂纹FGM圆筒应力强度因子。该方法仅需建立2D轴对称模型即可满足计算要求,在保证精度的基础上成功回避了传统方法中的复杂矩阵运算以及数值积分,且适用于不同FGM、筒体尺寸、裂纹深度等情况下的应力强度因子计算。通过多组算例对比分析,证明该方法计算精度高、计算过程简便,便于工程应用。
Due to the particular properties of the functionally graded material(FGM),it is difficult to avoid matrix operation and numerical integration during the calculation process of stress intensity factor.In this paper,by using the ratio of the crack tip stresses between FGM hollow cylinder and homogeneous hollow cylinder,the solution problem of the stress intensity factor of FGM hollow cylinder with external circumferential crack can be simplified to the extraction problem and the empirical formula calculation problem.Then,the stress intensity factor can be obtained conveniently by using the empirical formula of stress intensity factor of homogeneous hollow cylinder and the ratio of stresses between FGM hollow cylinder and homogeneous hollow cylinder.In this method,the complex matrix operation and numerical integration in traditional method can be successfully avoided by using only 2D model.In addition,the present method is applicable to all kinds of material combinations and structure geometries.The comparisons indicate that the calculation results coincide with the reference results.The simplicity and usefulness of the present method in engineering application are proved by given examples.
作者
李戎
杨萌
梁斌
NODA Nao-Aki
LI Rong;YANG Meng;LIANG Bin;NODA Nao-Aki(School of Civil Engineering,Henan University of Science and Technology,Luoyang,Henan 471023,China;Department of Mechanical Engineering,Kyushu Institute of Technology,Kitakyushu-shi 804-8550,Japan)
出处
《工程力学》
EI
CSCD
北大核心
2020年第4期22-29,共8页
Engineering Mechanics
基金
国家自然科学基金项目(U1604135,11402077)
河南省高等学校重点科研项目(20A130002)
河南科技大学博士科研启动基金项目(4007-13480032)
河南省科技攻关项目(202102210039)。
关键词
功能梯度材料
圆筒
应力强度因子
有限元分析方法
裂纹尖端应力比值
functionally graded material
hollow cylinder
stress intensity factor
finite element analysis method
the ratio of stresses at crack tip