期刊文献+

基于奇异值分解的无参考立体图像质量评价 被引量:2

No-Reference Stereoscopic Image Quality Assessment Based on Singular Value Decomposition
在线阅读 下载PDF
导出
摘要 针对非对称失真立体图像,提出了一种基于奇异值分解的无参考评价算法.该方法首先考虑人眼对空间频率变化敏感的特性和双目融合特性,对立体图像进行Gabor滤波,基于奇异值分解的融合策略生成融合图.然后,采用亮度加权直方图的局部二值模式算法分别对融合图、左右子图像提取特征,并将左右子图像的特征向量融合、采用欧几里得距离和夹角余弦进行向量之间的比较;为度量非对称失真差异,利用图像相似度算法计算左右子图像之间的相似性.最后,将融合图的特征向量、子图像的融合及比较特征向量、子图像的相似度特征向量级联,利用支持向量回归(SVR)算法完成特征到主观质量分数的回归映射.在LIVE3DⅡ、Waterloo-IVCⅠ和Waterloo-IVCⅡ立体图像库上对本算法进行测试.实验结果表明,本算法性能良好,优于目前主流的立体图像质量评价算法. For asymmetrically distorted stereoscopic images,a no-reference evaluation algorithm based on singular value decomposition is proposed.First,considering visual sensitivity to spatial frequency variation and binocular fusion,Gabor filtering was performed on the stereoscopic image,and a fusion strategy based on singular value decomposition was proposed to generate a cyclopean image of the left and right sub-image pair.Then,the proposed luminance-weighted histogram local binary pattern metric was used to extract features of the cyclopean image and the left and right sub-images.Furthermore,feature fusion and comparison were conducted on the two feature vectors corresponding to the left and right sub-images,respectively.Euclidean distance and cosine were used to implement the vector comparison.Particularly,to measure the difference between asymmetrically distorted sub-image pair,image similarity metric was utilized to calculate the similarity between the left and right sub-image pair.Finally,feature vector of the cyclopean image,the fusion and comparison feature vectors,and the similarity feature vector were concatenated into a total feature vector,and regression mapping was performed from the feature vector to the subjective score using support vector regression.The algorithm was tested on the LIVE 3 DⅡ,Waterloo-IVCⅠand Waterloo-IVCⅡdatabases.The experimental results show that the proposed algorithm has an outstanding performance and is superior to other state-of-the-art image quality assessment metrics.
作者 沈丽丽 王莹 Shen Lili;Wang Ying(School of Electrical and Information Engineering,Tianjin University,Tianjin 300072,China)
出处 《天津大学学报(自然科学与工程技术版)》 EI CSCD 北大核心 2020年第6期641-646,共6页 Journal of Tianjin University:Science and Technology
基金 国家自然科学基金资助项目(61520106002).
关键词 立体图像质量评价 非对称失真 奇异值分解 欧几里得距离 图像相似度 stereoscopic image quality assessment asymmetric distortion singular value decomposition Euclidean distance image similarity
  • 相关文献

参考文献2

二级参考文献4

共引文献2

同被引文献8

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部