摘要
橡胶材料是一种性能优良的非金属黏弹性材料,广泛应用于机械和汽车产品的振动噪声控制领域。为了对橡胶产品的力学性能进行分析,有必要在材料试验的基础上,采用合适的本构模型,建立橡胶材料的应力-应变模型并辨析模型参数,从而为进一步的橡胶件有限元仿真和动力学分析提供材料参数。普遍应用的Mooney-Rivlin模型和Yeoh模型等唯象模型无法描述内外部复杂因素,如胶料硬度和环境温度对胶料力学特性的影响。在分析实测胶料应力-应变数据的基础上,分别对传统唯象模型进行修正,引入硬度强化因子和温度软化因子,使得本构关系模型更加完善。在所建立的修正模型基础上,采用非线性最小二乘法对修正模型进行参数辨识,并通过与实测结果对比,验证了所建模型的有效性。
Rubber material is a non-metallic visco-elastic material with excellent performance.It is widely used in the field of vibration and noise control of machinery and automotive products.In order to analyze the mechanical properties of rubber products,it is necessary to establish a stress-strain model of the rubber material and identify the parameters of the model based on the material tests.Then,the appropriate constitutive model and corresponding material parameters can be used for finite element simulation and dynamic analysis of the rubber parts.The phenomenological models such as the universally used Mooney-Rivlin model and Yeoh model cannot describe complex internal and external influencing factors,such as the influences of rubber hardness and ambient temperature on the mechanical properties of the rubber compound.In this work,on the basis of analyzing the stress-strain data of the rubber tests,the traditional phenomenological model is modified.The hardness enhancement factor and temperature softening factor are introduced to make the constitutive model more perfect.The nonlinear least squares method is used to identify the parameters of the modified model.The validity of the established model is verified by comparing the simulation results with the measurement results.
作者
蔺朝莉
陈志军
杨平
LIN Zhaoli;CHEN Zhijun;YANG ping(Chongqing College of Electronic Engineering,Chongqing 400054,China;Department ofAutomotiveTechnology,Chongqing Radio&TVUniversity,Chongqing 401520,China)
出处
《噪声与振动控制》
CSCD
2020年第2期66-70,共5页
Noise and Vibration Control
基金
重庆市教育科学规划课题资助项目(2016-GX-168)
中国高等教育学会职业技术分会课题资助项目(GZYZD2016015)
重庆电子工程职业学院科研平台资助项目(XJPT201703)。
关键词
振动与波
隔振橡胶
本构模型
参数识别
温度相关
硬度相关
vibration and wave
vibration isolation rubber
constitutive model
parameter identification
temperature correlation
hardness correlation