期刊文献+

基于Faster R-CNN的精密零部件的识别方法 被引量:6

Detection Method of Precision Parts Based on Faster R-CNN
在线阅读 下载PDF
导出
摘要 在航空航天领域中,惯性陀螺等精密器件装配精度要求较高,目前大多采用人工装配的方法,装配效率低、装配过程受人主观影响大。针对上述存在的问题,采用基于Faster R-CNN模型的目标识别算法,通过VGG16特征提取网络提取特征信息,在模型训练过程中利用COCO数据集的深度网络模型进行迁移训练,防止模型过拟合并加速参数的训练过程。同时,该方法还与其他深度学习模型以及传统的目标识别算法进行了对比,在自建的数据模型测试集上进行试验。结果表明,基于VGG16的Faster R-CNN目标识别模型在复杂环境及物体发生遮挡的情况下对于惯性陀螺的识别具有明显的优势,准确率可达到87.80%,召回率80.30%,识别速度可达到15FPS,能够满足实时性要求。 In the field of aeronautics and astronautics,the assembly accuracy of precision devices such as inertial gyroscope is required to be high.At present,most of them are assembled manually,which has low assembly efficiency and the assembly process is easily influenced by human subjective.In view of the above problems,this paper adopts the objection detection algorithm based on Faster R-CNN,extracts the feature information through VGG16 network,and uses the depth network model of COCO data set for migration training in the process of model training to prevent the model from over-fitting and accelerating the training process of parameters.At the same time,the method is compared with other deep learning models and traditional algorithms,and is tested on the self built data model test set.The results show that the Fast R-CNN object detection model based on VGG16 has obvious advantages for the detection of inertial gyro in the complex environment and when the object is blocked,the accuracy can reach 87.80%,the recall rate 80.30%,and the recognition speed can reach 15FPS,which can meet the real-time requirements.
作者 孙海铭 时兆峰 李晗 王芳 SUN Haiming;SHI Zhaofeng;LI Han;WANG Fang(Beijing Institute of Automatic Control Equipment, Beijing 100074)
出处 《飞控与探测》 2020年第2期26-36,共11页 Flight Control & Detection
关键词 深度学习 FASTER R-CNN 目标识别 惯性陀螺 复杂环境 deep learning Faster R-CNN object detection inertial gyroscope ambiguous environment
  • 相关文献

参考文献6

二级参考文献42

  • 1安向京,施燕斌,戴 斌,常文森,贺汉根.美军地面机器人[J].国防科技,2000,21(2):10-13. 被引量:7
  • 2陈亮,秦前清.基于SVM的遥感影像目标检测中的样本选取[J].计算机工程与应用,2006,42(9):212-214. 被引量:3
  • 3Shepherd R F,Ilievski F,Choi W,et al.Multi-gait soft robot[].Proceedings of the National Academy of Sciences of the United States of America.2012
  • 4Martinez R V,Fish C R,Chen X,et al.Elastomeric origami:Programmable paper-elastomer composites as pneumatic actuators[].Advanced Functional Materials.2012
  • 5Lim S,Balakrishnan H,Gi?ord D,et al.Stochastic motion planning and applications to tra?c[].The International Journal of Robotics Research.2011
  • 6Sprowitz A,Pouya S,Bonardi S,et al.Roombots:recon?gurable robots for adaptive furniture[].IEEE Comput Intell Mag.2010
  • 7White P J,Revzen S,Thorne C E,et al.A general sti?ness model for programmable matter and modular robotic structures[].Robotica.2011
  • 8You W,Kong M X,Sun L N,et al.Control system design for heavy duty industrial robot[].Ind Robot.2012
  • 9Hochberg L R,Bacher D,Jarosiewicz B,et al.Reach and grasp by people with tetraplegia using a neurally controlled robotic arm[].Nature.2012
  • 10Guizzo E.How Google’’s self-driving car works[].IEEE Spectrum Online.2011

共引文献240

同被引文献37

引证文献6

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部