期刊文献+

基于标识解析和可信度矩阵的动设备故障诊断模型研究 被引量:5

Research on the Fault Diagnosis Model for Movement Equipment Based on Identity Resolution and Credibility Matrix
在线阅读 下载PDF
导出
摘要 基于工业大数据的故障诊断技术能够有效分析动设备的"健康"状况,但面临数据源单一,故障样本少,尤其是算法模型使用范围窄的问题,大幅降低了故障诊断的准确性。为此,提出一种基于标识解析和可信度矩阵的动设备故障诊断新模型。该模型通过标识解析技术,实现对多维多源数据的汇集,通过可信度矩阵继承各常规算法的评估可信度,促进了不同数据源的数据集成和不同算法的优势叠加,进而形成了动设备故障的组合式诊断模型,提升了诊断的精确度和模型的适用性。最后,以石化行业压缩机轴承故障诊断为例,验证了本模型的优越性。 Considering the fact that insufficient data source, few fault samples and narrow application range of the algorithm model jointly characterize the industrial big data-based fault diagnosis technology which to be used to effectively analyze health condition of the movement equipment, a new fault diagnosis model based on identity resolution and credibility matrix was proposed for fault diagnosis of the movement equipment. In this model, through making use of identity resolution technology, the multi-source and multidimension data can be collected and the assessment credibility of various mainstream algorithms are inherited by creating the credibility matrix to promote data integration of various data sources and advantages multiplying, by this way, a combined diagnosis model for faults of the movement equipment comes into being to improve accuracy and applicability of the diagnosis. Finally, a compressor bearing fault diagnosis in petrochemical industry verified the superiority of this model.
作者 朱林全 蒋文英 李朋 邢镔 ZHU Lin-quan;JIANG Wen-ying;LI Peng;XING Bin(College of Mechanical Engineering,Chongqing University;Chongqing Industrial Big Data Innovation Center;State Key Engineering Laboratory of Industrial Big Data Application Technology)
出处 《化工自动化及仪表》 CAS 2020年第2期134-142,共9页 Control and Instruments in Chemical Industry
关键词 故障诊断 轴承故障 压缩机 标识解析 可信度矩阵 综合诊断 fault diagnosis bearing fault compressor identity resolution credibility matrix comprehensive diagnosis
  • 相关文献

参考文献10

二级参考文献109

  • 1陆爽,田野.滚动轴承故障特征识别的时频分析研究[J].机床与液压,2005,33(6):183-185. 被引量:8
  • 2Isermann R, Balle E Trends in the application of model based fault detection and diagnosis of technical processes[J]. Control Engineering Practice, 1997, 5(5): 709-719.
  • 3Parthasarathy K, Jay H L. Diagnostic tools for multivariable model-based control system[J]. Industrial and Engineering Chemistry Research, 1997, 36(7): 2725- 2738.
  • 4Anne Raich, Ali Cinar. Statistical process monitoring and disturbance diagnosis in multivariable continuous processes [J]. AIChE J, 1996, 42(4): 995-1009.
  • 5Jie Chen, Ron J. Patton. Robust model-based fault diagnosis for dynamic systems[M]. Boston: Kluwer Academic Publishers, 1999.
  • 6Bagheri F, Khaloozaded H, Abbaszadeh K. Stator fault detection in induction machines by parameter estimation using adaptive Kalman filter[C]. Proc of 2007 Mediterranean Conf on Control and Automation. Piscataway: IEEE, 2007: 1-6.
  • 7Li L L, Zhou D H. Fast and robust fault diagnosis for a class of nonlinear system: Detectability analysis[J]. Computers and Chemical Engineering, 2004, 28(12): 2635-2646.
  • 8Janos Gertler. Analytical redundancy methods in fault detection and isolation[C]. Proc of IFAC/ IMACS Symposium on Fault Detection, Supervision and Safety for Technical Processes. Baden-Baden: Pergamon Press, 1991.
  • 9Iri M, Aoki K, O'Shima E, et al. An algorithm for diagnosis of system failures in the chemical process[J]. Computers and Chemical Engineering, 1979, 3(1/2/3/4): 489-493.
  • 10Wu J D, Wang Y H, Mingsian R B. Development of an expert system for fault diagnosis in scooter engine platform using fuzzy-logic inference[J]. Expert Systems with Applicatio, 2007, 33(4): 1063-1075.

共引文献735

同被引文献39

引证文献5

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部