期刊文献+

基于订单整合的即时物流配送“打包”算法研究 被引量:2

Research on"Packaging"Algorithm of Instant Logistics Distribution Based on Order Integration
在线阅读 下载PDF
导出
摘要 随着移动互联网与物联网技术的蓬勃兴起,即时物流配送作为满足顾客即时需求的重要商业模式取得了飞速发展。在现阶段的即时物流配送中,如何在限定时间内将尽可能多的订单派送到顾客手中,是亟待解决的发展问题。笔者立足于订单整合思想,首先依据FCM聚类算法对区域订单进行空间聚类,对整体区域进行合理分割,进而依据订单相似度对区域内订单进行合并“打包”,最后引入时间约束,构建基于服务时间最小化的路径优化模型,能够完成高效及时的即时物流配送服务。与传统业务模式相比,“打包”算法综合考虑了时空约束,能够有效提高即时物流配送效率。 With the rapid development of mobile Internet and Internet of Things technology,instant logistics and distribution,as an important business model to meet the immediate needs of customers,has achieved rapid development.In the current stage of realtime logistics distribution,how to send as many orders as possible to customers in a limited time is a development problem that needs to be solved urgently.This article is based on the basic idea of order integration.First,fuzzy clustering of the order set according to the FCM clustering algorithm and reasonable division of the overall area;second,the consolidation and"packaging"of orders in the area according to the similarity of the orders;Time constraints,the establishment of a path optimization model based on minimizing delivery time,and achieving efficient and timely delivery services.Compared to a single order-driven business model,the"packaging"algorithm takes into account space-time constraints and effectively improves distribution efficiency.
作者 王本丞 任建伟 Wang Bencheng;Ren Jianwei(Wuhan University of Technology,Wuhan Hubei 430070,China)
机构地区 武汉理工大学
出处 《信息与电脑》 2020年第6期69-72,共4页 Information & Computer
基金 武汉理工大学2019年度国家级大学生创新创业训练计划(项目编号:201910497188)。
关键词 FCM聚类算法 相似度 路径优化 “打包”算法 FCM clustering algorithm similarity path optimization packing algorithm
  • 相关文献

参考文献7

二级参考文献32

  • 1刘健庄,谢维信,黄建军,李文化.聚类分析的遗传算法方法[J].电子学报,1995,23(11):81-83. 被引量:27
  • 2张元标,吕广庆.基于混合粒子群算法的物流配送路径优化问题研究[J].包装工程,2007,28(5):10-12. 被引量:18
  • 3Gehring H, Homberger J. Parallelization Of a two-phased metaheuristic for routing problems with time windows[J]. Asia-Pacific Journal of Operational Research, 2001,18(1) : 35-47.
  • 4Potvin j Y, P, ousseau J M. A parallel route building algorithm for the vehicle routing and scheduling problem with time windows[J]. European Journal of Operational Research,1993,66(3) :331-340.
  • 5Cbiang W C, Russell R. Hybrid heuristics for the vehicle routing problem with time windows[J ]. Transportation Scicnce.1995,29(2) :18-25.
  • 6Thangiab S R. Htybrid Genetic Algorithms, Simulated Annealing and Tabu Search Heuristic for Vehicle Routing Prohlems with Time Windows [M]. in Practical Handbook of Genetic Algorithms, Volume III: Complex Structures, CRC Press,1999,13(4) :347-381.
  • 7Gambardella I. M, Taillard E, Agazzi G. MACS-VRPTW: A multiple ant colony system for vehicle routing problems with time windows[J]. New Ideas in Optimization,1999,52(2):63-76.
  • 8Ombuki B, Nakamura M, Maeda O. A hybrid search based on genetic algorithms and tabu search for vehicle routing[C]. On Artificial Intelligence and Soft Computing (ASC 2002),2002,7(3):176-181.
  • 9Beatrice Ombuki, Brian J Ross, Franklin Hanshar. Multi-objective genetic algorithms for vehicle routing problem with time windows[J]. Applied Intelligence,2006,24(1):17-30.
  • 10[1]Mester,D,Brysy.Active guided evolution strategies for large scale vehicle routing problems with time windows[J].Computers & Operations Research,2005,32:1 593-1 614.

共引文献77

同被引文献33

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部