摘要
We report the results of accurate prediction of lift(C L)and drag(C D)coefficients of two typical airfoil flows(NACA0012 and RAE2822)by a new algebraic turbulence model,in which the eddy viscosity is specified by a stress length(SL)function predicted by structural ensemble dynamics(SED)theory.Unprecedented accuracy of the prediction of C D with error of a few counts(one count is 10−4)and of C L with error under 1%-2%are uniformly obtained for varying angles of attack(AoA),indicating an order of magnitude improvement of drag prediction accuracy compared to currently used models(typically around 20 to 30 counts).More interestingly,the SED-SL model is distinguished with fewer parameters of clear physical meaning,which quantify underlying turbulent boundary layer(TBL)with a universal multi-layer structure,and is thus promising to be more easily generalizable to complex TBL.The use of the new model for the calibration of flow condition in experiment and the extraction of flow physics from numerical simulation data of aeronautic flows are discussed.