期刊文献+

A grain-size-dependent structure evolution in gradient-structured(GS) Ni under tension 被引量:2

在线阅读 下载PDF
导出
摘要 This work outlines an experimental investigation of grain-size-dependent structure evolution under tension in nickel with a grain size gradient.Two opposite and competing processes,grain refinement and coarsening,were examined within one specimen,due to the widely ranging grain size in gradient-structured(GS)Ni.A tensioninduced minimum grain size of approximately 280 nm was determined in GS Ni,which is comparable to those obtained by severe plastic deformation processes.The minimum grain size was phenomenologically explained using a dislocation model.Below the minimum grain size,the Ni’s grain coarsening ability peaked at approximately 50 nm and progressively decreased with decreasing grain size,showing an inverse grain-size-dependent coarsening tendency.Moreover,this inverse grain coarsening behavior was related to a transition in the deformation mechanism,through which the deformation process was accommodated more by partial dislocation than by full dislocation below a critical grain size.This was confirmed by observation of the microstructure and low temperature tensile testing results.This work demonstrates a high-throughput strategy for exploring the minimum grain size and grain-size-dependent coarsening in metals.
出处 《Nano Materials Science》 CAS 2020年第1期39-49,共11页 纳米材料科学(英文版)
基金 financial support received from the National Key Research and Development Program of China(Grant no.2017YFB0702003) the National Natural Science Foundation of China(Grant no.51471165).
  • 相关文献

同被引文献14

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部