期刊文献+

基于YOLO的铁路侵限异物检测方法 被引量:11

Detection Method of Railway Intruding Obstacle Based on YOLO Algorithm
在线阅读 下载PDF
导出
摘要 基于现有的铁路侵限异物检测方法只能识别出静态障碍物且识别速度较慢的问题,提出一种基于YOLO算法的铁路侵限异物检测方法.针对铁路侵限异物检测的特殊性,合理设计YOLO模型结构.采用24个卷积层、4个最大池化层及2个全连接层完成异物图像的提取、降维、识别输出,并使用实拍疑似侵限异物图片对YOLO模型进行预训练,达到学习及降低过拟合的目的,最终实现了异物定位及识别的功能.实验中通过对1660张单幅疑似铁路侵限异物图片进行检测,结果表明,该方法对正常曝光的侵限异物图片检测准确率较高,而且在识别速度方面较AlexNet及Adaboost算法具有较大的优越性. Since the existing railway intruding obstacle detection method can only recognize static obstacles and its recognition speed is slow,an obstacle detection method based on YOLO(You Only Look Once)algorithm was proposed in this paper.The structure of YOLO model is designed reasonably according to the particularity of the railway intruding obstacle.24 convolutional layers,4 maximum pooling layers and 2 full connection layers were used to complete the images extraction,dimensionality reduction and recognition output.Real pictures of suspected intruding obstacle were taken to pre-train the YOLO model,so as to achieve the purpose of studying and overfitting reduction,finally the function of realizing the localization and recognition intruding obstacles from images has been realized.The detection experiment was carried out with 1660 single pictures of suspected intruding obstacles of railway invasion.The results show that this method is more accurate than AlexNet and Adaboost algorithms in detecting the images of suspected railway intruding obstacles under normal exposure,and its recognition speed is superior to AlexNet and Adaboost algorithms as well.
作者 于晓英 苏宏升 姜泽 董昱 YU Xiao-ying;SU Hong-sheng;JIANG Ze;DONG Yu(School of Automation and Electrical Engineering,Lanzhou Jiaotong University,Lanzhou 730070,China;Key Laboratoryof Opto technology and Intelligent Control,Ministry of Education,Lanzhou Jiaotong University,Lanzhou 730070,China;Electrification&Communication Inst.,China Railway Design Corporation,Tianjin 300308,China)
出处 《兰州交通大学学报》 CAS 2020年第2期37-42,共6页 Journal of Lanzhou Jiaotong University
基金 国家自然科学基金(61867003,61763023) 兰州交通大学青年科学基金(2015038)。
关键词 铁路侵限异物 YOLO算法 目标识别 列车运行安全 railway intruding obstacle YOLO algorithm target recognition train operation safety
  • 相关文献

参考文献14

二级参考文献63

  • 1武治国,王明佳,丁南南.基于视觉分析的机场跑道异物检测技术研究[J].仪器仪表学报,2015,36(S01):62-67. 被引量:3
  • 2包健,赵建勇,周华英.基于BP网络曲线拟合方法的研究[J].计算机工程与设计,2005,26(7):1840-1841. 被引量:21
  • 3唐娟,行鸿彦.基于二次相关的时延估计方法[J].计算机工程,2007,33(21):265-267. 被引量:51
  • 4白雁兵,高艳.机器视觉系统坐标标定与计算方法[J].电子工艺技术,2007,28(6):354-357. 被引量:8
  • 5MAIR C,FARAROOY S. Practice and Potential of Com- puter Vision for Railways[C]//Proceedings of IEE Semi- nar Condition Monitoring for Rail Transport Systems. London, UK: IEE Press,1998:l-3.
  • 6OHTA M. Level Crossings Obstacle Detection System U-sing Stereo Cameras[J]. Quarterly Report of RTRI (Rail- way Technical Research Institute), 2005,46 (2) : 110-117.
  • 7SEHCHAN O, SUNGHUK P, CHANGMU L. Vision Based Platform Monitoring System for Railway Station Safety[C]//Proeeedings of 2007 7th International Confer- ence on ITS Telecommunications. New York: ITS Press, 2007: 172-176.
  • 8XUE J, CHENG J, WANG L, et al. Visual Monitoring- based Railway Grade Crossing Surveillance System[C] // Proceedings of 1st International Congress on Image and Sig- nal Processing(CISP 2008). New York: IEEE Press,2008 : 427-431.
  • 9JAIN A K, DUIN R P W, MAO J. Statistical Pattern Recognition: A review[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(1): 4-37.
  • 10CHAPELLE O, HAFFNER P, VAPNIK V N. Support Vector Machines for Histogram-based Image Classification [J]. IEEE Transactions on Neural Networks, 1999, 10 (5) : 1055-1064.

共引文献245

同被引文献112

引证文献11

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部